On-line Unsupervised Outlier Detection Using Finite
Mixtures with Discounting Learning Algorithms

Kenji Yamanishi
NEC Corporation
4-1-1,Miyazaki,Miyamae,
Kawasaki,Kanagawa
216-8555,JAPAN

k-yamanishi@cw.jp.nec.com

ABSTRACT

Outlier detection is a fundamental issue in data mining,
specifically in fraud detection, network intrusion detection,
network monitoring, etc. SmartSifter, which we abbreviate
as SS, is an outlier detection engine adrressing this prob-
lem from the viewpoint of statistical learning theory. This
paper provides a theoretical basis for SS and empirically
demonstrates its effectiveness. SS detects outliers in an on-
line process through the on-line unsupervised learning of a
probabilistic model (using a finite mixture model) of the in-
formation source. Each time a datum is input SS employs
an on-line discounting learning algorithm to learn the prob-
abilistic model. A score is given to the datum based on the
learned model, with a high score indicating a high possibility
of being a statistical outlier. The novel features of SS are:
1) it is adaptive to non-stationary sources of data; 2) a score
has a clear statistical/information-theoretic meaning; 3) it
is computationally inexpensive; and 4) it can handle both
categorical and continuous variables. An experimental ap-
plication to network intrusion detection shows that SS was
able to identify data with high scores that corresponded to
attacks, with low computational costs. Further experimen-
tal application has identified a number of meaningful rare
cases in actual health insurance pathology data from Aus-
tralia’s Health Insurance Commission.

1. INTRODUCTION

The problem of outlier detection is one of the most funda-
mental issues in data mining. It is closely related to fraud
detection, network intrusion detection, etc., since criminal
or suspicious activities may often induce statistical outliers.

We focus on the issue of on-line unsupervised outlier detec-
tion in which the following conditions are required:

1) Outliers are detected based on unsupervised learning of
the information source. In general statistical approaches

Jun-ichi Takeuchi
NEC Corporation
4-1-1,Miyazaki,Miyamae,
Kawasaki,Kanagawa
216-8555,JAPAN

tak@ap.jp.nec.com

Graham Williams
CSIRO Mathematical and
Information Sciences
GPO Box 664, Canberra ACT
2601, Australia

Graham.Williams@cmis.csiro.au

to outlier detection, one first learns an underlying model of
the mechanism for data-generation from examples, and then
evaluates how large a given input datum is deviated relative
to the model (see e.g., [1]). We require here that the learning
process be unsupervised. Although the supervised learning
based approach is popular in fraud detection ([2],[9],[11]),
the unsupervised learning based one is not only more tech-
nically difficult but also more practically important, since in
real situations labeled examples might not be available.

2) The process is on-line. That is, every time a datum is
input, it is required to evaluate how large the datum is de-
viated relative to a normal pattern. In contrast, most exist-
ing work on outlier detection (e.g., [1],[8],[9],[11]) in statis-
tics and data mining is concerned with batch-detection pro-
cesses, in which outliers can be detected only after seeing
the entire dataset. The on-line setting is more realistic than
the batch one when one deals with the tremendous amount
of data in network monitoring, etc.

Note that there exists only a few work (e.g. [3]) focusing
on the on-line unsupervised learning based approach. This
paper introduces SmartSifter (abbreviated as SS throughout
this paper), which meets the requirements 1) and 2).

The approach of SmartSifter is as follows:

I) SS uses a probabilistic model as a representation of an
underlying mechanism of data-generation. The model takes
a hierarchical structure, in which a histogram density with
a number of cells is used to represent a probability density
over the domain of categorical variables and for each cell
a finite mizture model is used to represent the probability
density over the domain of continuous variables.

II) Every time a datum is input, SS employs an on-line
learning algorithm to update the model. We have developed
the SDLE (Sequentially Discounting Laplace Estimation) al-
gorithm for learning the histogram density for the cate-
gorical domain (Sec.2.1), and the SDEM (Sequentially Dis-
counting Ezpectation and Mazimizing) algorithm (Sec.2.2)
for learning the finite mixture for the continuous domain.
Their most important feature is that they discount the ef-
fect of past examples in the on-line process.

IIT) SS gives a score to each datum on the basis of the
learned model, measuring how large the model has changed
after learning. Thus a high score indicates a high possibility
that the datum is an outlier.

The novel features of SS are summarized as follows:

a) SS is adaptive to non-stationary sources. In conventional
statistical approaches, it is usually assumed that an underly-
ing information source for data-generation is stationary [1].
This is, however, not realistic when one deals with drifting
sources or time-series data. The discounting algorithm em-
ployed by SS learns the source forgetting out-of-date statis-
tics of data, using a decay factor, hence is expected to be
adaptive to non-stationary sources.

b) A score calculated by SS has a clear statistical/
information-theoretic meaning. In most previous work, a
score is calculated using heuristics such as cost [4],[5] and
lacks a statistical justification, while the Mahalanobis dis-
tance [1], the quadratic distance [5],[8] were used to score
outliers in some work. SS defines a score for a datum in
terms of a statistical distance measuring how large the dis-
tribution learned from the datum has moved from the one
before learning. Thus it is natural to interpret that a datum
of high score is, with high probability, an outlier.

c) SS is computationally inerpensive. The computational
complexity of SS for calculating a score for each datum is lin-
ear in the number of parameters in the model and quadratic
in the number of variables. For example, it can process
about 90,000 data with four attributes in 28 seconds (Pen-
tium 111 550MHz).

d) SS can deal with both categorical and continuous vari-
ables. To our knowledge, SS is the first on-line unsupervised
outlier detector that can deal with both categorical and con-
tinuous variables.

The design of SS was inspired by the work by Burge and
Shaw-Taylor [3]. Our work differs from [3] in the following
regards: 1) SS treats both categorical and continuous vari-
ables, while [3] deals only with continuous ones. 2) While [3]
uses two models in the algorithm: the long term model and
the short term one, SS unifies them into one model with the
aim of a clearer statistical meaning and a lower computa-
tional cost. 3) SS uses either a parametric representation for
a probabilistic model or a non-parametric one, while only a
non-parametric one is used in [3]. In Sec.3.1, we compare
our parametric method with the non-parametric one to show
that the former outperforms the latter both in accuracy and
computation costs.

We empirically demonstrate the practical effectiveness of SS
using the network intrusion dataset (KDD Cup 1999) [7].
Although it was used in the context of a supervised intru-
sion detector learning problem in KDD Cup 1999, we used
it in the scenario of on-line unsupervised intrusion detec-
tion. In our experiment, for a network access log dataset
of size 458,078 including 1687 intrusions, it detected 55%
intrusions in the top 1% data of highest scores, and 82% in-
trusions in the top 5% data of highest scores. We also used
a health insurance pathology dataset supplied by the Aus-
tralian Health Insurance Commission to demonstrate that
SS was able to identify several meaningful rare cases in it.

2. OUTLINE OF SMARTSIFTER

Let (x,y) denote a datum where x denotes a vector of cate-
gorical variables and y denotes a vector of continuous vari-
ables. We write the joint distribution of (x,y) as p(x,y) =
p(x)p(y|x). Let p(x) be represented by a histogram density
with a finite number of disjoint cells (Sec.2.1), and for each
cell, for all xs that fall into it, let p(y|x) be represented by

an identical form of a finite mizture model (Sec.2.2). Hence
we prepare as many finite mixture models as cells in the
histogram density. Consider the situation where a sequence
of data is given: (x1,y1),(x2,¥2) - in an on-line process.
The fundamental steps of SmartSifter are given as follows:
1. Given the tth input datum (x¢,y:), identify the cell
that x; falls into and update the histogram density
using the SDLE algorithm (Sec. 2.1) to obtain p((x).
Then, for that cell, update the finite mixture model
using the SDEM/SDPU algorithm (Sec.2.2) to obtain
p® (y|x). For other cells, set p*(y|x) = pt*~V(y|x).
2. Calculate a score for the datum on the basis of the
models before and after updating (Sec.2.3).

2.1 Categorical Variables

Below we describe how to learn the histogram density over
the categorical domain. Let the number of categorical vari-
ables be n. Let the range of the ith categorical variable be
A® = {agi), e ,a&?} (i=1,---,n). Classify them to ob-
tain a finite number of disjoint sets: {Agi), e ,AS,?} (=
1,---,n), where AVNAY =0 (j # k) and A® = UL AP
We call the cell AL x - x A the (j1,- -+, jn)th cell. We
have M = v1 X -+ X v, cells in total. This induces a parti-
tioning of the domain.

Given such a partitioning of the domain, a histogram den-
sity forms a probability distribution, which takes a constant
value on each cell. The histogram density is specified by a
parameter 6 = (q1,- - ,qr) where Ele g =1, ¢ >0 and
q; denotes the probability value for the jth cell. If there
are L; symbols in the j-th cell, the probability value of each
symbol x in it is given by p(x) = ¢; /L;.

We introduce here the SDLE algorithm. This is a variant
of the Laplace law, by which one estimates the probability
value over a discrete domain with p(a) = (To +8) /(T + M3)
for each element a where 0 < 8 < 1, T is the size of a
data sequence, T, is the number of occurrences of a in the
sequence, and M is the number of elements in the discrete
domain. The SDLE algorithm is specified by a discounting
parameter r(> 0) where a smaller r; indicates that SDLE
has a larger influence of past examples (see Fig.1). The
Laplace law is reduced to the case of r, — 0 in SDLE.

2.2 Continuous Variables

Next we describe how to learn the model over the continuous
domain. We consider two versions: the parametric version
and the non-parametric one.

2.2.1 Parametric Version
In the parametric version we employ as a finite mixture
model over the continuous domain a Gaussian mizture model:

k
p(yl6) =Y cip(ylmi, As),
i=1

where k is a positive integer, ¢; > 0, ELI ¢; = 1 and each
p(y|pi, Ai) is a d-dimensional Gaussian distribution with
density specified by mean p; and covariance matrix A;:

1 1 _
p(ylpi, Ai) = @) ;172 &P (*E(y —u)TA m))

where i = 1,--- ,k and d is the dimension of each datum.
We set 0 = (1, p1, A1y -+ Chy ks Ai).

SDLE Algorithm

A partitioning of the domain: {Agi), - ,AS,?} (i=1,---,n),
Th,B: given.
Step 1. /* Initialization */
Let T(jly"' 5.7”) =0 (1 S]l S'U-i, 1= 15"' 7n)'
t:=1
Step 2. /* Parameter Updating */
while t <T (T: sample size)
Read x¢ = (21, - ,Zn)
For each (j1,--- ,jn)-th cell,
TGt 5gn) = (L =ra)Ti1(g1,- -+ 5 5n) + 6:(G1, - -
. . Ti(j1y--- yjn) + 8
B gy - — AR Y
q (.717 7.7n) (1 — (1 — "'h)t)/"'h T kB
For each x € A() A(2) --Ag.:),
p(t)(x) — q(t)(jh'" ’.7")
A AR al)
J1 2 in

where 6:(j1, - ,jn) = 1 if the t-th datum falls into the
(jla e 7jn)'th Cella and Jt(jla e 5.7") = 0 otherwise.
t:=t+1

Figure 1: SDLE Algorithm

First, we review the incremental EM algorithm [10] for learn-
ing Gaussian mixture models. Letting s be an iteration in-

dex, we define sufficient statistics S§S) (i=1,---,k) by

(s) —(S) (s)
(4777, 55)

t
L (30w, 0w
uw=1 u=1

where

58

u=1

s—1
NOI%—i et Vp(yulp
Y e n(yalu

We also define S (v) (i = 1,--- , k) for y, by
)y def (o) (s)
SO) E 2 (4 @),

The incremental EM algorithm for Gaussian mixture models
consists of the following E-step and M-step [10]:

(=1 p(e-D)

=D AGDy’ (1)

ORSIORSE}

E-step: Choose a datum y, from the sequence y*. Given
6¢~Y compute

59w = 3+ (). w)

— 8D () + 5 (w).

yu:'yz()()-yuyf).

Then, set S$¢) =gt (2)

M-step: Compute the new estimate 6¢*) by

1) = 5/ and AL = K /el) — p) T

The point is that in the E-step the sufficient statistics S¢~
is updated relative to for arbitrarily chosen y,. By repeating
the iteration of the E and M steps w.r.t.s, 6¢) converges.

We introduce here the SDEM algorithm by modifying the
incremental EM algorithm as follows:

(A) Choose y,. in time order, i.e., choose ys at the sth
round in the E-step. Make only one iteration of the
E and M steps for each s. This makes the parameters
updated every time a datum is input.

7.771)

t
*Yu, Z’YfS)(u) 'yuygj),

(B) Introduce a discounting parameter r (0 < r < 1) to
modify the updating rule (2) into the following:

5= (1=1)8E 4 (17 (8), 77 (8)y e, 17 (8)y¥2),

This rule makes the statistics exponentially decay with
a factor (1 — r) as the stage proceeds.

Note: If the modification is (B) only, without (A), we obtain
the algorithm proposed by Nolan (see e.g. [10]). The details
of the SDEM algorithm are in Fig. 2. Notice that in Fig. 2, a
parameter « is introduced in order to improve the stability of
the estlmates of ¢;, which is set to 1.0 ~ 2.0. Usually c(o) =
1/k and ,ui)s are set so that they are uniformly distributed
over the data space. The computation time for the SDEM
algorithm at each round is O(d*k) where d is the dimension
of the data and k is the number of Gaussian distributions.

SDEM Algorithm (r,a,k: given)

Step 1. /* Initialization */
Set N(O) (0) —(0) A(O) A(O)(1,..k).
t:=1
Step 2. /* Parameter Updating */
while ¢ <T (T:sample size)
Read y:
fori=1,2,...,k
(t) =(1—ar) C-Et_l) (y |“-Et_1)aAgt_1)) + ar
N ”p(yt\ugt_l),/\gt_l)) k
(t) =(1-)Et 1)_1_7.
5O = 4l
(t) —(t)/ (®)
A(t) =(1- r)/igt_l) + r'yi(t) yiyE
- T
A9 = KOl 00
t:=t+1

Figure 2: SDEM Algorithm

2.2.2 Non-Parametric Version
In the non-parametric version we employ as a finite mixture
model over the continuous domain a kernel mizture model:

Pl = 2 > w (i),

where K is given, ¢ = {q1,--- ,qr } is called a set of proto-
types, w(- : g;) is the kernel function defined as a Gaussian
density with mean ¢; and variance matrix ¥ = diag(c>,--- ,0?)
for a positive constant o, and d is the dimension of a datum.

3)

The difference between the parametric and non-parametric
versions is that the coefficient vector and the variance matrix
for a finite mixture are variable in the former model, while
they are fixed in the latter model.

‘We introduce here the SDPU (Sequentially Discounting Pro-
totype Updating) algorithm for on-line learning prototypes in
the kernel mixture. This is based on Grabec’s algorithm [6].
For a given data sequence y* = y; -- -y, first define:

ZA(t Tw(y : y-),

where A(t,t) = r, A(t,7) d:ef r(1—r)~""!forr <t—1and

0<r<lisa dlscounting factor. Note that 3.0 A(t,7) =

fiyly")

def

1 holds. Hence f(y|y*) is a weighted sum of w(y : y,) (7 =
1,---,t) where the weight becomes large as 7 increases.
Next define the square error of p(y|q) to f(y|y’) by

&(q:y") = / (p(la) — Fvly")* dy.

For a new input y:41, the SDPU algorithm updates a proto-
type ¢ into ¢ + Aq® by choosing Ag® so that &2 (q(t) +
Ag® : ylyiy1) is minimal under the condition that €(q :
y*) is minimized by q = q(t). The details are shown in Fig.3.

SDPU Algorithm (r,0, K: given)
Step 1. /* Initialization */
Set qgo) (i =1,...,K) so that they are uniformly distributed.
t:=1
Step 2 /* Prototype Updating */
while ¢t <T (T:sample size)
Read x:
for all (j,m, k,1)
(t)|2

B,(:l) = T(K (T, — q,(c?) exp(—ilmt"'l‘l;g’C)
(t)_ ()2
~YE L - af) exp(- 1051

(Here q,(:l) denotes the Ith component of q,(:).)

() _ &)y () _ () (¢) _ ()2
t (a5 =957 Y 4gm —950m) lag, ' —a; |
C](’ﬂ)Lkl = (0m1 — Rl 20’2k 7)) exp(— : 4021)
Solve the linear equation: >7, C’](?LklAqJ(.;)l = B,(:l)

(k=1,..,K,1=1,..,d) for all (j,m)
qﬁfl) = q](-ﬁ,)l + Aq;ﬁl

t:=t+1
Figure 3: SDPU Algorithm

Note: The computation time for the SDPU algorithm at
each round is O(d>K?) where d is the dimension of data
and K is the number of prototypes. The SDPU algorithm
coincides with Grabec’s algorithm [6] in the case where we
let r be time dependent as r = 1/¢.

The non-parametric version of SS can be thought of as a
variant of Burge and Show-Taylor’s program [3] since they
are both based on Grabec’s algorithm. Major differences
between them are 1) methods of discounting past examples
and 2) methods of score calculation.

2.3 Score Calculation
Below we give a method of calculating a score for a datum.

Let p®(x,y) be the joint distribution obtained at time ¢,

ie., pM(x,y) = p®(x)p®(y|x). Given an input (x:,y:) at
time t, we define its Hellinger score as

Sy =)3 [(Voory - oe=ne, y))2 d,

where r is a discounting parameter where we set 7, = r.
Intuitively, this score measures how large the distribution
p® has moved from p(*~1) after learning from (x;,y:).

We also define another score called the logarithmic loss as

Sp(xe,y:) = —logp*~V(xe) — log p V) (3 [xe).
From the viewpoint of information theory, the logarithmic
loss can be thought of as the codelength required to encode
(x¢,y:) under the assumption that a datum is generated
according to a probability density p¢~ Y.

3. EXPERIMENTAL RESULTS

3.1 Network Intrusion Detection

We applied SmartSifter to the dataset KDD Cup 1999 [7]
prepared for network intrusion detection. The purpose of
the experiment was to detect as many intrusions as possible
in an on-line setting without making use of the labels. Al-
though in KDD Cup 1999 the data labels were used in train-
ing for supervised intrusion detection, we used them only for
the evaluation of SS. Hence any supervised approach to the
dataset is not fairly comparable with SS.

Each datum in KDD Cup 1999 is specified by 41 attributes
(34 continuous and 7 categorical) and a label describing at-
tack type (22 kinds: normal, back, buffer_overflow, etc.)
where all labels except “normal” indicate an attack. We
used four of the original 41 attributes (service, duration,
src_bytes, dst_bytes) because these four were thought of as
the most basic attributes. Only ‘service’ is categorical. The
number of service kinds is 41, and we classified them into
{http, smtp, ftp, ftp_data, others}. Since the continuous at-
tribute values were concentrated around 0, we transformed
each value into a value far from 0, by y = log(z + 0.1).

The original dataset contains 4,898,431 data, including 3,925,651

attacks (80.1%). This rate of attacks is too large for sta-
tistical outlier detection. Therefore, we produced a sub-
dataset SF consisting of 976,157 data, including 3,377 at-
tacks (0.35%) by picking up the data whose attribute logged_in
is positive. Attacks that successfully logged_in are called in-
trusions. We further produced from SF two kinds of datasets
SF50 and SF10 by random sampling, where SF50 consists
of 50% of SF, and SF10 consists of 10% of SF. For SF10
and SF50, the first 8,000 data and the first 30,000 data were
respectively not scored but used only for training because
the model would not be well-trained in the early stages.

We generated two SF10s by making different random sam-
plings. For each of them, we ran both parametric and non-
parametric versions of SS where the former is denoted by
SS while the latter by SS*. The parameters of SS are set to
r = 0.0002, 7, = 0.0003,k = 2, = 2.0, while those of SS*
are set to r = 0.0002, r, = 0.0003, K = 10,0 = 0.2. SS pro-
cessed 97,621 data in 28.2 seconds, while SS* did in 244.8
seconds. Table 1 shows the number of intrusions SS(*) de-
tected where the logarithmic loss was used as a score. Here
coverage is the ratio of the number of detected intrusions to
that of intrusions in the dataset that SS(*) scored. SS is su-
perior to SS* both in accuracy and computation time. This
implies that the SDEM algorithm with a Gaussian mixture
works better than Grabec’s algorithm using a kernel mix-
ture, which is also a basis of the program in [3].

We also generated four SF50s by making different random
samplings or using an additional categorical variable ‘protocol-
type’ of range { tcp, udp , imcp }. Table 2 shows the number
of intrusions SS detected in the four SF50s. Remarkably, SS
was able to detect 82% intrusions in the top 5% data of
highest scores.

3.2 Outliersin Medical Pathology Data

Australia’s Health Insurance Commission (HIC) administers
the universal health insurance scheme known as Medicare,
in operation since 1975. CSIRO Australia is working with
the HIC to explore the utilization of pathology services.

top # of intrusions included (coverage)
ratio SS SS*
1% | 129 (40%) | 124 (37%) 17 (5%) 21 (6%)
3% | 226 (70%) | 222 (66%) | 43 (13%) | 51 (16%)
5% | 251 (77%) | 257 (76%) | 64 (19%) | 78 (23%)
10% | 319 (98%) | 331 (98%) | 206 (62%) | 132 (39%)
Table 1: Detected Intrusions in SF10
top # of intrusions included (coverage)
ratio service service & protocol_type
1% | 922 (55%) | 968 (57%) | 351 (21%) | 346 (21%)
3% | 1282 (76%) | 1260 (75%) | 1150 (68%) | 1165 (69%)
5% | 1391 (82%) | 1284 (76%) | 1310 (78%) | 1304 (77%)
10% | 1617 (96%) | 1576 (94%) | 1633 (97%) | 1636 (97%)

Table 2: Detected Intrusions in SF50

A dataset covering 2 years with over 32 million pathology
transactions is the basis of the study. Each transaction
records the type of medical test performed, an encrypted
identifier for the rendering doctor, the laboratory perform-
ing the test, and the doctor who requested the test, and
other information relating to the type of doctor and patient.

SmartSifter has been used on this dataset for two distinct
functions. The first used SS to identify errors in the data.
An initial application to the original transaction dataset
identified transactions that were unusual—outliers. Many
of the transactions identified had invalid data items (dol-
lar amounts had extra zeros, ages of patients were greater
than 100 years, etc.). The dataset for analysis can thus be
cleansed of these records.

The primary purpose of SS is to explore various transforma-
tions of the transaction dataset. These include aggregating
doctors (20,000 entities), patients (4,000,000 entities), and
laboratories (150 entities). SS was able to identify, for exam-
ple, laboratories that have patterns of behavior that are out
of the ordinary. One dataset used consisted of just 7 vari-
ables for each laboratory, including percentage distributions
over five test categories (e.g., Chemical tests, Microbiology
tests, Immunology tests, etc.), the number of different pa-
tients dealt with by the laboratory, and the frequency of
tests performed (Table 3). SS identified laboratories 109,
126, and 114 with consistently high distance scores. Two of
these laboratories specialized in Tissue Pathology (109 and
114) and the other does no Microbiology nor Tissue Pathol-
ogy (126). The “normal” situation for this dataset indicates
that pathology providers generally perform a spread of tests.

Further analyses with the HIC are in progress, employing

| Lab 71 Ts T3 Ty Ty Fi Fy |

108 0.64 0.19 0.10 0.04 0.01 0.32 0.03
109 O 0 0 1 0 1 0.43
110 0 0.00 O 0.57 042 089 0.09
111 0.29 0.13 0.02 0.05 0.49 032 0.01
114 O 0 0 1 0 0.96 0.30
116 0.41 0.05 0.05 0.01 046 046 0.31
119 0 0 0 0.5 0.5 0.5 0.5
126 0.33 O 033 0 033 1 1
127 0.33 0.18 0.01 0.01 0.45 0.33 0.01

Table 3: Sample laboratory data.

a wide variety of techniques drawn from data mining and
statistics in general. The use of SS provides insights into

the data, both through the identification of erroneous data
and through the identification of entities that may require
further investigation.

4. CONCLUSION

This paper has proposed SmartSifter as a program for on-
line unsupervised outlier detection. We gave a statistical
theory for SS and demonstrated its effectiveness in terms
of accuracy and computation time through the two exper-
iments: network intrusion detection for KDD Cup 1999
and rare event detection for the health insurance pathology
dataset provided by Australian Health Insurance Commis-
sion. It is expected that the framework of on-line unsuper-
vised outlier detection using SS would be further applied
into a wide variety of data mining issues other than fraud
detection, such as trend detection, topic identification.

Acknowledgement. The authors sincerely express their
gratitude to Dr.Yoshifumi Yamamoto of NEC Information
Systems for writing the codes for SmartSifter.

5. ADDITIONAL AUTHORS
Additional author: Peter.Milne (CSTRO Mathematical and Infor-
mation Sciences, GPO Box 664, Canberra ACT 2601, Australia,

email: Peter.MilneQcmis.csiro.au).

6. REFERENCES

[1] V. Barnett and T. Lewis, Qutliers in Statistical Data, John
Wiley & Sons, 1994.

[2] F. Bonchi, F. Giannotti, G. Mainetto, and D. Pedeschi, A
classification-based methodology for planning audit
strategies in fraud detection, in Proc. of KDD-99,
pp:175-184, 1999.

[3] P. Burge and J. Shaw-Taylor, Detecting cellular fraud using
adaptive prototypes, in Proc. of AI Approaches to Fraud
Detection and Risk Management, pp:9-13, 1997.

[4] P. Chan and S. Stolfo, Toward scalable learning with
non-uniform class and cost-distributions: A case study in
credit card fraud detection, in Proc. of KDD-98,
AAAI-Press, pp:164-168 (1998).

[5] T. Fawcett and F. Provost, Activity monitoring: noticing
interesting changes in behavior, in Proc. of KDD-99,
pp:53-62, 1999.

[6] I. Grabec, Self-organization of Neurons described by the
maximum-entropy principle, Biological Cybernetics vol. 63,
pp:403-409, 1990.

[7] http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[8] E. M. Knorr and R. T. Ng, Algorithms for mining
distance-based outliers in large datasets, in Proc. of the
24th VLDB Conference, pp:392—403, 1998.

[9] W. Lee, S. J. Stolfo, and K. W. Mok, Mining in a data-flow
environment: experience in network intrusion detection, in
Proc. of KDD-99, pp:114-124, 1999.

[10] R. M. Neal and G. E. Hinton, A view of the EM algorithm
that justifies incremental, sparse, and other variants, ftp://
ftp.cs.toronto.edu/pub/radford /www /publications.html
1993.

S. Rosset, U. Murad, E. Neumann, Y. Idan, and G. Pinkas,
Discovery of fraud rules for telecommunications-challenges
and solutions, in Proc. of KDD-99, pp:409-413, 1999.

[11

