|
DATA MINING
Desktop Survival Guide by Graham Williams |
|
|||
Heat Map |
> # From "http://datasets.flowingdata.com/ppg2008.csv"
> nba <- read.csv("data/ppg2008.csv")
> nba$Name <- with(nba, reorder(Name, PTS))
> library(ggplot2)
> nba.m <- melt(nba)
> nba.m <- ddply(nba.m, .(variable), transform,
rescale = rescale(value))
> p <- ggplot(nba.m, aes(variable, Name)) +
geom_tile(aes(fill = rescale), colour = "white") +
scale_fill_gradient(low = "white", high = "steelblue")
> base_size <- 9
> print(p + theme_grey(base_size = base_size) +
labs(x = "", y = "") +
scale_x_discrete(expand = c(0, 0)) +
scale_y_discrete(expand = c(0, 0)) +
opts(legend.position = "none",
axis.ticks = theme_blank(),
axis.text.x = theme_text(size = base_size *0.8,
angle = 330, hjust = 0, colour = "grey50")))
|