|
DATA MINING
Desktop Survival Guide by Graham Williams |
|
|||
Linear Model |
Compare two linear models
> wine = read.csv("wine.csv")
> lm1 = lm(Type ~ ., data=wine)
> lm1
Call:
lm(formula = Type ~ ., data = wine)
Coefficients:
(Intercept) Alcohol Malic Ash
4.4732853 -0.1170038 0.0301710 -0.1485522
Alcalinity Magnesium Phenols Flavanoids
0.0398543 -0.0004898 0.1443201 -0.3723914
Nonflavanoids Proanthocyanins Color Hue
-0.3034743 0.0393565 0.0756239 -0.1492451
Dilution Proline
-0.2700542 -0.0007011
> lm2 = lm(Type ~ Alcalinity + Magnesium, data=wine)
> lm2
Call:
lm(formula = Type ~ Alcalinity + Magnesium, data = wine)
Coefficients:
(Intercept) Alcalinity Magnesium
0.563157 0.116950 -0.009072
> anova(lm1, lm2)
Analysis of Variance Table
Model 1: Type ~ Alcohol + Malic + Ash + Alcalinity + Magnesium + Phenols +
Flavanoids + Nonflavanoids + Proanthocyanins + Color + Hue +
Dilution + Proline
Model 2: Type ~ Alcalinity + Magnesium
Res.Df RSS Df Sum of Sq F Pr(>F)
1 164 10.623
2 175 74.856 -11 -64.234 90.154 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
|