DATA MINING
Desktop Survival Guide by Graham Williams |
|||||
MatPlot |
This shows example using confidence intervals.
> library(plotrix) > my.matrix <- matrix(sample(30,10),nrow=5,ncol=2) > my.sample <- sample(3,10,replace=T) > my.points <- seq(20,100,20) > rownames(my.matrix) <- my.points > colnames(my.matrix) <- letters[1:2] > matplot(x=my.points, y=my.matrix, pch=c('x', 'o'), type = "b", lwd = 2, lty = c(1, 2), col = c("green", "black"), main = "Mat Plot with CI", xlab = "Observation", ylab = "Value", cex.main = 1.8, cex=2, cex.lab=1.5, cex.axis = 1.6, bty='n') > plotCI(x=rep(my.points, 2), y= as.vector(my.matrix), uiw=my.sample, col=rep(c("green", "black"), each=nrow(my.matrix)), add=T) |