DATA MINING
Desktop Survival Guide by Graham Williams |
|||||
|
Use Weka:
## Create an interface to Weka's Naive Bayes classifier. NB <- make_Weka_classifier("weka/classifiers/bayes/NaiveBayes") ## Note that this has a very useful print method: NB ## And we can use the Weka Option Wizard for finding out more: WOW(NB) ## And actually use the interface ... if(require("e1071", quietly = TRUE) && require("mlbench", quietly = TRUE)) { data("HouseVotes84", package = "mlbench") model <- NB(Class ~ ., data = HouseVotes84) predict(model, HouseVotes84[1:10, -1]) predict(model, HouseVotes84[1:10, -1], type = "prob") } ## (Compare this to David Meyer's naiveBayes() in package 'e1071'.) |
Todo: UNDER CONSTRUCTION