DATA MINING
Desktop Survival Guide by Graham Williams |
|||||
Tutorial Example |
to again use the binomial distribution, but to specify the probit link function (identified as binomial(probit)). The probit function
> mydata <- read.csv(url("http://www.ats.ucla.edu/stat/r/dae/logit.csv")) > myprobit<- glm(admit ~ gre + gpa + topnotch, data=mydata, family=binomial(link="probit"), na.action=na.pass) > summary(myprobit) Call: glm(formula = admit ~ gre + gpa + topnotch, family = binomial(link = "probit"), data = mydata, na.action = na.pass) Deviance Residuals: Min 1Q Median 3Q Max -1.3862 -0.8856 -0.7130 1.2715 1.9800 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -2.7978830 0.6476352 -4.320 1.56e-05 *** gre 0.0015244 0.0006404 2.380 0.0173 * gpa 0.4009847 0.1948032 2.058 0.0396 * topnotch 0.2730331 0.1803284 1.514 0.1300 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 499.98 on 399 degrees of freedom Residual deviance: 477.89 on 396 degrees of freedom AIC: 485.89 Number of Fisher Scoring iterations: 4 |