DATA MINING
Desktop Survival Guide by Graham Williams |
|||||
|
> wine <- read.csv("wine.csv") OR > load("wine.RData") > dim(wine) [1] 178 14 > str(wine) `data.frame': 178 obs. of 14 variables: $ Type : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ... $ Alcohol : num 14.2 13.2 13.2 14.4 13.2 ... $ Malic : num 1.71 1.78 2.36 1.95 2.59 1.76 1.87 2.15 1.64 1.35 ... $ Ash : num 2.43 2.14 2.67 2.5 2.87 2.45 2.45 2.61 2.17 2.27 ... $ Alcalinity : num 15.6 11.2 18.6 16.8 21 15.2 14.6 17.6 14 16 ... \$ Magnesium : int 127 100 101 113 118 112 96 121 97 98 ... $ Phenols : num 2.8 2.65 2.8 3.85 2.8 3.27 2.5 2.6 2.8 2.98 ... $ Flavanoids : num 3.06 2.76 3.24 3.49 2.69 3.39 2.52 2.51 2.98 3.15 ... $ Nonflavanoids : num 0.28 0.26 0.3 0.24 0.39 0.34 0.3 0.31 0.29 0.22 ... $ Proanthocyanins: num 2.29 1.28 2.81 2.18 1.82 1.97 1.98 1.25 1.98 1.85 ... $ Color : num 5.64 4.38 5.68 7.8 4.32 6.75 5.25 5.05 5.2 7.22 ... $ Hue : num 1.04 1.05 1.03 0.86 1.04 1.05 1.02 1.06 1.08 1.01 ... $ Dilution : num 3.92 3.4 3.17 3.45 2.93 2.85 3.58 3.58 2.85 3.55 ... $ Proline : int 1065 1050 1185 1480 735 1450 1290 1295 1045 1045 ... |
Note that R provides a useful interactive file chooser through the
function file.choose. This will prompt for a file name,
and provides tab completion.
> ds <- read.csv(file.choose()) |