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This paper presents a number of experiments dealing with various aspects of the ID3
decision tree induction algorithm. The aspects dealt with include the choice of attribute to
split on, exception split pruning, and combining decision trees.
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INTRODUCTION

A number of algorithms have been developed to con-
struct decision trees from examples of decisions made
by an expert. Such algorithms employ a ‘divide and
conquer’ technique, repeatedly dividing the collection
of examples into smaller and more homogeneous col-
lections. The divides correspond to branching in the
decision tree, and each node of the tree corresponds
to a collection of examples to be conquered.

Some success in using these techniques to aid in the
induction of knowledge bases for use in knowledge-
based systems has been achieved (Quinlan ef al.,
1986). However, there are a number of problems
with such induction techniques, and research aimed at
improving them is continuing.

This paper presents a number of experiments car-
ried out in order to investigate various aspects of
Quinlan’s ID3 (Quinlan, 1986) decision tree induction
algorithm (described in the next section). Various
modifications and enhancements are made to the basic
algorithm, each then being used in a real-world exam-
ple to induce decision trees. The modifications made
include changes to bias, categorisation of integer attri-
butes, and exception split pruning. The resulting deci-
sion trees are applied to a large database dealing with
geographic information, classifying each of the data-
base objects (i.e. records). These results are com-
pared to results produced by a regression model,
which was constructed from a specially chosen test set

" of objects from the same database. Comparisons are

also made between the modified decision tree algo-
rithm and the ID3 algorithm.
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THE DECISION TREE ALGORITHM

The decision tree induction algorithm used for these
experiments involves four basic steps, in common with
other induction algorithms.

The induction begins with T, a fraining set consist-
ing of a set of examples of a domain expert’s deci-
sions. Each example is thought of as an object
described by a number of attributes, each object hav-
ing been classified by the domain expert, representing
his/her decision about that object.

The ID3 algorithm allows attributes of two types:
those whose values are taken from a small finite unor-
dered set of possible values (categorical attributes) and
those whose values are integers (integer attribufes).
An example of an object, identified as ‘Region 19481’
is:

Region 19481: Soil is of type CC1,
Distance to nearest seaport is 836 km,
Average weekly moisture index for

winter is 21%.

The soil type (a categorical attribute), the distance to
nearest seaport (an integer attribute), and the average
weekly moisture index for winter (an integer attribute)
have the values CCl1, 836, and 21 respectively.

The algorithm first considers a number of partitions
of the training set, T. This set of alternative partitions
is denoted by S, with the member partitions identified
as S; i = 1,...,n. Bach partition consists of a
number of cells, each cell containing a collection of
objects from T. The cells of a given partition are
identified as C; j = 1,...,p. Each S; represents an
alternative branching pattern from the current node in
the decision tree.

ID3 considers only those partitions which divide the
objects according to a single attribute. Thus, a parti-
tion associated with the attribute Soil will contain a
cell for each of the values of Soil in the training set.
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‘Members of a cell have the same value for their Soil
attribute. Each partition, then, is associated with
exactly one attribute, and each categorical attribute is
associated with exactly one partition. Integer attri-
butes may define more than one partition, each con-
taining only two cells. One cell consists of those
objects with a value for the integer attribute less than
some value n, the other cell having those objects
whose value for the integer attribute is greater than or
equal to that same #.

The next step in the general algorithm is to choose
S*, the best partition from S. ID3 bases its choice of
S* on information theory, computing E(A) as the
expected information required for the tree with attri-
bute 4 as the root (Quinlan, 1986). The attribute
with the minimum value for E(A) is chosen as the
root of the decision tree. E(A) can be expressed in
terms of p;;, where p;; is the number of objects in C;
which are classified as class j. For categorical attri-
butes with » values,

noo Dij
E@A)= - ¥ ¥ pyh—p—
i=lj=1 Y P

k=1

where m is the number of classes. For integer attri-
butes, #n is taken as two, and of all possible binary
splits of the training set with respect to the integer
attribute, the one with the minimum value of E(A4) is
chosen as the value of E(A4) for that attribute.

The third step of the algorithm involves construct-
ing a discriminating description of each cell of S*.
Such a description of a cell describes each object in
that cell, but does not describe any object in any
other cell of S*. These discriminating descriptions are
the branch labels in the decision tree.

Branch labelling in ID3 is trivial. Since the node
from which the branches emanate is labelled with a
single attribute, the branches are labelled with the
various values of the attribute (for categorical attri-
butes) or with ‘> n’ and ‘= n’ (for integer attri-
butes), where # is the midpoint of the binary split on
the integer attribute.

The final step of the algorithm tests a stopping cri-
terion to determine if the dividing and conquering can
stop. If the criterion is not met, then the cells of S*
are each used as new training sets, and the algorithm
is re-applied to each. The stopping criterion used in
‘1D3 tests for class homogeneous cells.

The general algorithm is summarised as:

1. Construct S, the set of alternative partitions of
the training set.
Select the best S* € S.

3. TFind a discriminating description for each cell,
C;, in S*,

4. TFor each C;, test the stopping criterion. If it is
not met, then use C; as a training set and repeat
from step 1.
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AN EXAMPLE: THE ARID DATABASE

The Database

All the experiments to be described below use the
ARID database. This is a subset of the Australian
Resources Information System (ARIS) which is a
continental-scale geographic information system
(Walker, Cocks & Young, 1985). The ARID database
consists of objects corresponding to single grid-cells,
which are approximately 700 square kilometre rec-
tangular regions. Australia divides into 11, 109 such
regions, 8413 of which are arid regions and form the
ARID database. For each object, values of some 40
attributes are maintained, including, for example, the
dominant soil type, the distance to the nearest
seaport, and a number of moisture indices.

Because of the importance of agriculture to
Australia’s economy, advice on how best to make use
of our vast land area is essential. The ARID data-
base, for example, has been used for the prediction of
the viability for the pastoral use of land in the arid
regions (Cocks, Young & Walker, 1986). A regression
model was constructed based upon 106 representative
objects from the ARID database. The objects in this
training set, referred to as the T106 training set, were
classified by an agricultural scientist (the domain
expert), and used to construct a first approximation
model of grazing viability. This model was then
refined until it gave predictions for viability which
corresponded (88%) to the expert’s opinion for all of
the objects in the training set. The model was then
applied to the rest of the database to provide predic-
tions for viability for the arid regions of Australia.
These predictions, on the whole, have been accepted
as realistic by the domain expert.

This regression model is used in these experiments
as the domain expert. The conclusions of the model
are assumed correct, and form the basis of comparis-
ons used to judge the quality of the classifications
produced by the decision trees. The same training set,
T106, is used for the experiments, but with the classif-
ications given to its members by the Model rather
than the original domain expert.

The attributes selected by the expert as being
relevant to the problem of deciding viability for pas-
toral use included the predominant soil category
(Soil), the predominant class of upper and lower vege-
tation (UVeg and LVeg), the distance in kilometres to
the nearest seaport (DPort), and three moisture indi-
cators (AWMIH, AWMIS, and AWMIW). AWMIH
is the average weekly moisture index for the wettest
consecutive 13 weeks of the year, AWMIS is the aver-
age weekly moisture index from November to April
inclusive (i.e. Summer), and AWMIW is the average
weekly moisture index from May to October inclusive
(i.e. Winter). The Soil attribute has 30 possible
values, whilst UVeg and LVeg have 50 and 41 possible
values respectively. The moisture indices take integer
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values in the range 0 to 100. The classes are referred
to as VLow, Low, Medium and High in these experi-
ments.

The T106 Training Set
The composition of the objects in the T106 training
set is summarised below.

Of the 30 possible values for Soil, the training set
contains examples of only 9. There are only 17 of the
possible 50 values for UVeg represented in T106, and
only 15 of the possible 41 values for LVeg.

The values for DPort in T106 range from 121 km
to 1225 km, there being 99 distinct values. AWMIH
ranges ranges from nine to 95, with 46 distinct values
in this range. Similarly the AWMIS attribute ranges
from eight to 83 with 30 distinct values, and AWMIW
ranges from four to 43, with 25 distinct values.

The class associated with each object, which indi-
cates the viability for pastoralism for the correspond-
ing region, is represented by 14 objects classified as
VLow, 16 as Low, 40 as Medium and 36 as High in
T106.

Constructing A Decision Tree: T106DC

An application of the ID3 algorithm to the T106
training set was carried out. The values of the ID3
cost, E(A), associated with each of the attributes
when choosing the initial root of the decision tree, is
given in Table 1 below. Note that the value of E(A)
for the integer attributes is the best obtainable by any
binary split on the integers. For these best binary
splits the split point is also given below.

A E(A) | Split
Soil 62.94
UVeg 68.62
. LVeg 77.69
DPort 102.80 | 925

AWMIH 116.24 20
AWMIS 119.83 31
AWMIW | 105.62 11

Table 1. Attribute costs for root of T106DC,

The complete decision tree constructed is shown in
Figure 1. The attribute Soil, having the minimum
value of E(A) (see Table 1), labels the root of the
decision tree. There are nine branches leading from
this root; the branches labelled with 2 and 12 are
combined, since they lead to the same subtree. Each
branch corresponds to one of the nine values for the
Soil attribute found in the T106 training set. For
those values of Soil which do not appear, there exists
an implicit branch leading to a subtree consisting of
just the node Null, indicating that no class can be
assigned.
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Figure 1: Decision tree T106DC

Each leaf node of the decision tree is labelled with a
decision, i.e. class, along with a superscript which is
the number of objects in the training set correspond-
ing to this leaf node. For example, there are three
objects in the T106 training set which have a value of
2 or 12 for the Soil attribute, each of which is classi-
fied as Medium.

The decision tree so constructed, T106DC, can now
be applied to all of the objects in the ARID database.
A summary of the application of both the T106DC
decision tree and the Model to the ARID database is
given in Table 2. It is noted that whilst the Model is
able to classify (or cover) all objects, T106DC only
covers 5924 of them. That is, there exists objects in
the database for which there is no corresponding path
through the decision tree from the root to a leaf node.
In decision tree T106DC, for example, any object
with Soil=10 can not be classified (and so is not
covered).

Class: VLow Low Medium High Total

Model: 1691 2484 2763 1475 8413
(20.1%) (29.5%) (32.8%) (17.5%)

T106DC: 632 1879 2224 1192 5924
(10.7%)  (31.7%) (37.5%) (20.1%)

Table 2. Model and T106DC applied to ARID.

A comparison of the answers given by the Model
and by T106DC is presented in Table 3. It is seen
from the table that the decision tree agrees with the
model 71.5% of the time (excluding those objects not
covered by T106DC). Three degrees of disagreement
are introduced. Since it is known that an ordering
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exists on the classes, VLow < Low < Medium <
High, we say that two classifications of one object
mildly disagree if the two classes are neighbours in
this ordering. A moderate disagreement occurs when
the two classes are separated by one class, and a
strong disagreement occurs when the two are
separated by two classes. Strong disagreements can
occur only between VLow and High. From the table
it is seen that the Model and T106DC agree or only
mildly disagree on 98.2% of the data base.

Agree Mildly Moderately  Strongly
Disagree  Disagree Disagree
4327 1581 106 0
(71.5%)  (26.7%) (1.8%) 0

Table 3. Comparing T106DC to the Model.

THE EXPERIMENTS

A number of aspects concerning the ID3 algorithm, as
well as other decision tree constructing algorithms,
have often been left unspecified, or have not been
dealt with. Two aspects dealt with in these experi-
ments centre upon the sensitivity of the cost function
and the problem of generalising overly specific deci-
sion trees.

The first issue relates to the sensitivity of the 1D3
cost function, E(A), to the data. A brief scan of
Table 1, for example, shows that the three categorical
attributes have roughly the same value, and that the
four integer attributes likewise have similar values.
Two points are made from this observation. Firstly,
how should the °‘best’ attribute be chosen from
amongst a number of approximately equal best attri-
butes, especially if the cost function returns values
which have some uncertainty about them, due to
uncertainty about the data? Secondly, does the type
of the attribute bias the cost computed for that attri-
bute? These two aspects of the cost function are con-
sidered first.

T106DI: Conflict Handling
This first experiment is concerned with the problem of
deciding which of a number of equally good attri-
" butes, to choose. On several occasions in constructing
T106DC, for example, both UVeg and DPort had
equal values computed for their costs. Because of an
implicit ordering on the attributes in the ID3 algo-
rithm, UVeg was always chosen. However, the choice
of DPort would seem just as good from the point of
view of the cost function. If the cost function can be
relied upon, then it should be expected that other
choices lead to decision trees which are just as good.
Decision tree T106DI was constructed by choosing
integer attributes over categorical attributes, whenever
their costs were the same. The specified attribute ord-
ering was

{DPort AWMIH AWMIS AWMIW Soil UVeg LVeg}
The Australian Computer Journal, Vol 19, No. 2, May 1987

compared to an ordering of
{Soil UVeg LVeg DPort AWMIH AWMIS AWMIW}

used in constructing T106DC.

The resulting decision tree again has Soil as the
root, as there is no equal competitor for this position.
The tree differs from T106DC in only three of the
nine branches emanating from this root. (See Figure
2.) Of these, two represent changes of choice from
the categorical attribute UVeg to the integer attribute
DPort, and the other from UVeg to AWMIH.

Table 4 below indicates that T106DI did not per-
form as well as TI06DC. Because integer attributes
are preferred to categorical attributes, and branches
from integer attributes cover all possible values of
that attribute, the coverage was expected to increase.
Although the coverage by T106DI is approximately
20% greater than that of T106DC, the classifications
given by T106DI to the extra objects mostly disagree
with the classifications given to them by the Model.
Of the 1164 extra objects covered, only 30.8% are
classified in agreement with the Model. There are no
strong disagreements, and of the new disagreements,
only 5% are moderate. The combined
agreement/mild disagreement percentage is 98%.

Application  Agree Disagree  Coverage
T106DC: 4237 1687 5924
(71.5%)  (28.5%) (70.4%)
T106DI: 4595 2493 7088
(64.8%)  (35.2%) (84.3%)

Table 4. T106DC and T106DI compared to the Model.
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Figure 2: Decision tree T106DI
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It is seen then that significantly different results are
obtained depending upon which equally best attribute
is chosen. In this experiment it is also seen that
choosing integer attributes over categorical attributes
results in decision trees with greater coverage, as
would be expected. With this greater coverage though
comes the cost of a slight decrease in the accuracy of
the decision tree.

T106Aa: Categorising Integer Attributes

This second experiment deals with the problem of bias
in the ID3 cost function. Quinlan (1986, p. 100) has
shown that the cost function favours categorical attri-
butes with many values. Since integer attributes are
handled as binary valued categorical attributes, and
the categorical attributes used in these experiments
have many values, there is a strong bias against
integer attributes. In an attempt to alleviate this
problem, the AW attributes (AWMIH, AWMIS, and

AWMIW), are treated, in the following experiments, .

as categorical attributes. As has been previously
noted, the ARID training set contains objects which
have 46 distinct values for AWMIH, 30 distinct values
for AWMIS, and 25 for AWMIW. In these experi-
ments, the distinct values become the categories of
each of the respective attributes.

An integer attribute should only be considered as a
categorical attribute when the number of distinct
values of that attribute occurring in the training set is
much less than the size of the training set. Such a
restriction avoids decision tress which have large
branching factors, a result of having a branch for
each of the possible values of the attribute. The
integer attribute DPort is thus ruled out for these
experiments. DPort could be included though by
categorising it into ‘n’ subranges, where n might be
the average number of categories in the other categor-
ical attributes. Such a categorisation is not considered
here. N

The decision tree T106Aa was constructed using the
ID3 cost function for the choice of attribute at each
node. An ordering of

{Soil UVeg LVeg AWMIH AWMIS AWMIW DPort}

was used whenever there was a tie for the minimum
value of E(4).

. It is expected that the resulting decision tree will not
cover as much of the ARID database as previous trees
have, since only a limited number of all the possible
values of the AW attributes are now ever considered.
Also, the chances of selecting one of the AW attri-
butes for the root of any tree is increased. The result-
ing decision tree is illustrated in Figure 3.

The above expectations are borne out. The initial
root node of T106Aa is AWMIW, with an ID3 cost
of 59.75. This compares with a value of 105.62 when
AWMIW is considered as an integer attribute in
T106DC. The complete list of values for the ID3 costs
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Figure 3: Decision tree T106Aa.

in choosing the initial root of the T106Aa decision
tree is given in Table 5.

Applying the decision tree to the ARID database
results in a coverage by T106Aa of only 2963 objects
(35.2%). Of this coverage, the ratio of agreement to
disagreement with the Model is approximately 1:1.
However an analysis of the disagreements is more
encouraging. Of the three degrees of disagreement
introduced previously, 59% of the disagreements are
mild (e.g. classified by the Model as High, but as
Medium by T106Aa), whilst 36% are moderate (e.g.
classified by the Model as High, but as Low by
T106Aa), and only 5% are strong (e.g. classified as
High by the Model, but as VLow by T106Aa).

A E(A) Split
Soil 62.94

UVeg 68.62

LVeg 77.69

DPort 102.80 | 925

AWMIH | 60.91
AWMIS 82.62
AWMIW | 59.75

Table 5. Attribute costs for root of T106Aa.

A number of modifications are made below in an
attempt to improve the performance of this decision
tree.
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T106Ad: Splitting Continuous Attributes

One technique for generalising the decision tree is to
make use of the knowledge that the AW attributes are
really continuous. It then makes sense, where
appropriate, to introduce midpoint, or multiway,
splits, similar to ID3. An obvious example in T106Aa
is the subtree whose root is along the path with
AWMIW =6, Soil=24 (refer to Figure 3). This root
is labelled with AWMIH, and has two branches. One
branch is labelled with ‘14, 15°, and leads to VLow,
and the other branch is labelled with ‘56, 59°, and
leads to Low. There appears to be a very strong case
for introducing a binary split here.

T106Ad, then, is the same as T106Aa with the
above subtree rooted at AWMIH replaced with a
binary split subtree with the same root, and a split
point of 35. For this path, objects with a value for
AWMIH less than 35 are classed as VLow, whereas
objects with values greater than or equal to 35 are
classed as Low. With such a modification the only
change that can occur to the resulting classifications is
that some objects which were classified as Null by
T106Aa can now be classified as either VLow or Low.

Applying T106Ad to the ARID database results in
303 fewer Nulls. Of these, 69% agree with the
Model, and 31% mildly disagree with the Model.

T106Af: A Further Split-Generalisation

Another obvious candidate for split is the subtree
rooted with AWMIS on the path AWMIW =9. If the
AWMIS =10 branch of this subtree is ignored, then a
binary split can be made with a split point of 17.
Thence, for AWMIS less than 17, the class is VLow,
and for AWMIS greater than or equal to 17 the class
. is Medium. For this experiment, the exception when
AWMIS=10 is kept, so that an object is classified
using the binary split only if AWMIS #10.

Making this modification to T106Ad increases the
coverage of the ARID database by another 256
objects “of which 32% agree with the Model.
Together, agreement and mild disagreement account
for 78% of the increased coverage.

T106Ae: Removing an Exception Split
The part of the T106Aa decision tree modified in
T106Af contains an exception split. An exception
split arises arises when most of the members of a
- training set belong to a single class, but the training
set contains some objects not in that class — the
exceptions. If the exceptions account for only a small
percentage of the whole training set, then there is a
possibility that they are due to noise in the training
set, resulting in them being misclassified. (Quinlan
(1986) discusses the problem of noise.)

One approach to handling exceptions splits is to
reclassify them in agreement with the majority of
objects in the training set containing the exceptions.
Decision tree T106Ae was constructed by reclassifying
the single exception in the training set with

The Australian Computer Journal, Vol 19, No. 2, May 1987

AWMIW =9, and AWMIS< 17 from Low to VLow,
in agreement with the other 8 members of this train-
ing set. T106Ae modifies TI06Af by removing the
appropriate subtree. Thus T106Ae no longer correctly
classifies the T106 training set, being 0.94% in
disagreement.

Applying T106Ae to the ARID database results in
only 60 more AIRD objects being covered. Of these,
only 23 agree with the Model, although a further 22
are only mild disagreements. Of the other 15, four
strongly disagree and 11 moderately disagree. These
poor results indicate that the exception should prob-
ably be kept in this case.

T106Ag: Changing The Root

The performance, with respect to the Model, of the
T106A decision trees constructed so far has been
somewhat poor when compared to the performance of
T106DC. As already mentioned, the poor coverage is
due, to a large degree, to the choice of AWMIW as
the root of the decision tree. However the higher per-
centage of disagreement is also of concern. In an
attempt to improve the performance of these decision
trees, and to further investigate the technique of
categorising integer attributes, decision tree T106Ag
was constructed.

The ID3 algorithm was again employed, as in
T106Aa, but now the choice for the root node of the
decision tree was overridden. Recalling that ID3
selects AWMIW as the root of T106Aa, here Soil is
selected as the root because that choice by ID3 in
T106DC lead to a good decision tree. All other
choices of attributes for T106Ag are left to ID3. The
resulting decision tree is given in Figure 4.

The performance of the resulting decision tree is
indeed markedly improved. The coverage, being 4577
ARID objects, is significantly better than that of the
other T106A experiments discussed above. Of all the
T106A experiments, it also has the greatest percentage
agreement (67.9%) with the Model. It still does not
reach T106DC’s level of performance though.

T106Aj: Split-Generalisations

A number of generalisations using our knowledge of
the true nature of the AW attributes are possible.
These are for the paths Soil=9, Soil=15, and
Soil=17. For the first of these, there are two clear
groupings, with some exceptions around the split
point where AWMIW =21, 22 (refer to Figure 4).
Drawing upon the experience of removing the excep-
tions in T106Ae, the exceptions around the split point
are kept. The second candidate for generalisation, on
the path Soil =15, has a boundary exception split, and
although a three way split may be feasible here, a
two-way split is made, with the case AWMIH=10 as
an exception. The third generalisation is straight for-
ward, with a split point of AWMIH =19, and results
in the construction of the same subtree as found in
T106DC.
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Figure 4: Decision tree T106Ag.

Each of these generalisations in turn improves the
decision tree. The resulting decision tree, T106Aj of
Figure 5, is almost identical to T106DC, but improves
upon T106DC in its coverage (by 7.5%), without los-
ing its accuracy (71.3% agreement).

SUMMARY
Table 6 presents a summary of the experiments
described in this paper.

This paper has presented a collection of techniques
for modifying decision tree building algorithms. The
techniques introduced include the categorisation of
integer attributes, split-generalisations on such attri-
butes, and exception split handling. It has also been
demonstrated that choosing different equally good
attributes can lead to significant changes to the qual-
ity of the resulting decision tree.

-For the purpose of these experiments, a regression
model was used as the domain expert. Thus, classifi-
cations given to objects by the regression model were
used to assess the quality of the decision trees by com-
paring the Model’s classifications with the classifica-
tions given by the decision tree.

Experiment T106DI shows that where contention
arises over the choice of attribute, then a strategy of
favouring integer attributes over categorical attributes
results in decision trees with wider coverage. In the
case of T106DI, the accuracy of the decision tree has
suffered to a small degree, but not significantly.
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Figure 5: Decision tree T106Aj.

Similar results would be expected in the general case,
since integer splits cover all possible values of the
integer, whereas categorical splits only cover those
values found in the training set.

A problem with the ID3 cost function is that it has
a bias toward many valued categorical attributes. The
approach explored in experiment T106Aa of categoris-
ing certain integer attributes did not initially prove to
produce good results, due to a dramatic decrease in
the coverage of the decision tree. Coupled with this
was a significant increase in the moderate and strong
degrees of disagreement. However, this approach,
coupled with suitable generalisation heuristics does
offer some promise.

Generalising the pseudo-categorical attributes in the
decision tree is shown to be of benefit in the T106Ad
and T106Af experiments. Both of these experiments
result in improvements in coverage, along with
increases in agreement.

The process of removing exception splits, as illus-
trated in experiment T106Ae, did not result in any sig-
nificant changes, but further experimentation is
required. .

The T106Ag and T106Aj experiments showed that
restricting the root node of the decision tree to be a
categorical attribute rather than a pseudo-categorical
attribute, but then allowing pseudo-categorical attri-
butes elsewhere, resulted in a decision tree with better
coverage, and better accuracy. Combining this with
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Decision Tree | Description Coverage | Agree | Mild | Moderate | Strong
T106DC Application of ID3. 70.8 71.5 26.7 | 1.8 0
T106DI Favour integer attributes when equal | 84.3 64.8 33.1 2.1 0
_ minimum cost occurs.
T106Aa Application of ID3 with the 35.2 48.4 30.6 | 18.6 2.3
attributes as categorical.

T106Ad Split generalisation of integer attributes. 38.8 50.3 30.7 16.9 2.1
T106Af Further split generalisation. 41.9 49.0 31.8 17.0 2.3
T106Ae Remove exception split. 42.8 48.8 31.6 17.0 2.3
T106Ag Categorical attribute as root. 54.4 67.9 29.8 2.3 0
T106A] Split generalisation in T106Ag 75.7 71.3 27.1 1.7 0

Table 6. Summary of decision tree applications, with comparisons to the Mode — all figures are percentages.

the generalisation techniques described above, pro-
duces a decision tree of greater coverage and greater
accuracy than ID3 alone (T106DC).

Before these results can be generalised to any deci-
sion tree construction task, further experimentation,
on other tasks (i.e. databases) is required. However,
a number of other experiments have been carried out
on the ARID database using different training sets, of
differing sizes. The preliminary results from these
further experiments have agreed, in spirit, with those
presented here.
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