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1. INTRODUCTION

A knowledge-based system is a computer system which
employs a knowledge base and an inferencing mechanism
to solve problems. An important aspect of such systems is
that the knowledge base is maintained separately from the
inferencing mechanism. The rationale for such separation
is that the usually declarative knowledge contained in a
knowledge base can be more easily modified and updated
if there is no need to refer to the inferencing machinery.
Such systems are also identified by their ability to explain
the steps taken in solving a problem, by reference to the
knowledge base. Also, the knowledge base is usually
represented in a readily human-understandable form.

A rule-based system is a knowledge-based system in
which some variation of the production rule (Davis and
King, 1984) is used to encode knowledge. The term
“expert system” has been used to refer to knowledge-
based systems which perform tasks usually performed by
“experts”. The vast majority of these expert systems have
in fact been rule-based systems (Waterman, 1986). A
number of deficiencies however have arisen with the use of
rule-based systems (Williams, 1986). These include res-
trictions imposed by the knowledge representation
scheme, the encoding of much implicit knowledge, the
knowledge acquisition bottleneck, and the inability to add
in new types of knowledge to the system after the system
has been developed. Richer methods for representing
knowledge for use by expert systems have thus been
sought. It is in this context that the frames formalism is
introduced.

FrameUP is a representation system based upon
frames. It was developed specifically to provide the facili-
ties required for the implementation of an expert system.
The Household Electrics’Fault Finding Expert (HEFFE)
has been implemented using FrameUP. This expert system
has the task of determining the cause of faults in household
electrical wiring.

The aim of the work described here is to represent all
elements of an expert system (tasks, rules, procedures, etc.)
within the uniform structure provided by frames. We show
that at least some of the problems of expert systems, as
discussed in Williams (1986), can be solved. The aim of this
paper is to introduce the terminology of Frames and to
illustrate the use of frames for implementing an expert
system.

2. FRAMES

A frame is a named node of a hierarchical network repres-
enting a concept or object. Associated with each frame isa
collection of slot-value structures which represent the var-
ious attributes of the concept or object being represented.
Frames are thus somewhat like record structures as found
in other programming languages, where the fields of a
record correspond to the slots of a frame. However, the
values of the slots may be procedures, symbols (numbers,
strings), or the names of other frames, and we may have
one or more of these associated with a single slot at any
one time. A distinguishing feature of frames is that when
values are added or removed from slots, procedures may
automatically be activated to carry out a variety of other
tasks.
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The frames scheme was proposed as a way of represent-
ing stereotypical situations (Minsky, 1975), where a ste-
reotype of a class of objects is a description of those
features (slots) expected to be found associated with each
object of that class. Some of these slots might represent
defaults, and are used, in the absence of other information,
to provide values for particular instances of the class of
objects described by the stereotype. Other slots record the
distinguishing characteristics of the class of objects: char-
acteristics which each object of the class will inherit.

Figure 1 illustrates a simple frame from the world of
household electrical items. This frame represents an
instance of the class of objects known as DeskLamps, and
is named DeskLampl. The other slots indicate that this
particular DeskLamp is NotOperating, that it has the
relation PluggedInto with the object named PowerPointl,
and that it OperatesFrom an object named PowerPoint2.
DeskLamp, PowerPointl and PowerPoint2 are in fact
the names of other frames. The IsA slot defines the position
of this frame in the hierarchy. X

For clarity, the terminology frame.slot is introduced.
Thus, instead of saying that DeskLamp is the value of the
IsA slot of the frame for DeskLamp1l, we say that Desk-
Lamp is the value of DeskLampl./sA, or more concisely,
that DeskLamp1./sA DeskLamp.

DeskLampl
IsA: DeskLamp
Status: NotOperating
Pluggedinto: PowerPointl
OperatesFrom: PowerPoint2

Figure 1. A frame representing an object.

3. LISP TERMINOLOGY

FrameUP is implemented in a version of the LISP pro-
gramming language called Franz LISP. A basic under-
standing of LISP is required in order to follow the discus-
sion presented below. A briefintroduction to the necessary
concepts follows.

LISP is a list processing, functional programming lan-
guage. The basic data type is a list, which has the form (a b
¢ d), where a, b, ¢ and d are either atoms (names) or are
themselves lists. An empty list () is denoted by the atom nil.
A list consists of a head and a tail. In LISP terminology,
these are the car and the cdr (pronounced “could-er”).
The car (head) of the list above is the atom a, whilst the
cdr (tail) is the list (b ¢ d). When the cdr of the list is an
atom, a dotted pair is used to represent the list. Thus, the
list (a . b) has the atom a as its car and the atom b as its
cdr, whereas (a b) has a as its car and the list (b) as its cdr.

The concept of a function is central to LISP — a func-
tion takes a number of arguments and returns some value.
A function definition is identified in LISP as a list whose
car is the special symbol lambda. The cdr consists of a list
of arguments followed by the definition of the function.
Functions can be associated with an atom, thus giving a
name to the function. Function application is effected by
having a function or the name of a function as the first
member of a list, with the rest of the list being the argu-

ments of the function. The following example illustrates
both a function definition, and function application. It
defines a function which returns the average of its two
arguments, x and y. The body of the function uses the two
LISP built-in functions called sum and quotient, and
illustrates how the result of one function application can be
used as the argument for another. LISP uses the first-most
inner-most rule of evaluation, so that the sum of x and y is
calculated, and then it is divided by 2.

(lambda (x y) (quotient (sum X y) 2))

Predicates in LISP are functions which return nil to
indicate falsity, and t or any other non-nil object to indicate
truth. The predicate or, for example, evaluates to t if at
least one of its arguments is non-nil. Otherwise it returns
nil. Similarly, (member x y) is true if x is a member of the
listy, and (equal x y) is trueif x and y are the same objects.

Variables in LISP are atoms with values associated (or
‘bound’) to them. Also associated with each atom we can
have a property list. This provides a place to store data
associated with the atom. Each property has aname and an
associated value. LISP provides functions to store and to
access these values — (putprop ’a ’b ’c) stores the value b
as property ¢ of a, and (get "a ’c) returns the value stored as
property c of a (i.e. b). The quotes in these LISP expres-
sions indicate that what follows is to be treated much like a
constant — it is not to be evaluated.

Similar in concept to the property list is the association
list. This is a list made up of sub-lists. Each sub-list has the
form (atom value) where value may be an atom or a list.
The value is said to be associated with the atom. The
function assoc takes two arguments, an atom and an
association list, and returns the value associated with the
specified atom in the association list. For example:

(assoc’c'((al) (b2)(c3)(d4)))

returns (3).

A variable may have bound to it a list which has the
form of a function (i.e. its car islambda etc.), or a function
can return a list whose form is that of a function. We can
apply such functions to arguments with the LISP apply.
For example, if the list

(lambda (x y) (quotient (sum x y) 2))

is bound to the atom a then (apply a ‘(1 3)) returns 2, the
average of 1 and 3.

Finally, LISP also provides a macro facility. One prede-
fined macro in Franz LISP is called let. This has the form:

(let (x =) (y = b) ...) lisp-expression)

where all occurrences of x and y in the lisp-expression are
replaced by the values of a and b respectively.

4. A FRAMES REPRESENTATION LANGUAGE —
RLL :

Greiner and Lenat (1980) developed the framesideainto a
representation language (RLL), in which as much as pos-
sible has a representation using frames. RLL is described
as an “expert system whose ‘task domain’ is itself the
building of expert systems” (Barstow et al, 1983).
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RLL incorporates many of the usual features of a frame
scheme. In particular, objects, concepts and generic
classes are represented as frames, and an inheritance
mechanism is provided. But an important new idea intro-
duced in RLL is that for each type of slot known to the
system there should be a frame representing information
about that slot. Figure 2 illustrates such a frame for the slot
PluggedInto which appeared in Figure 1. The information
recorded about a slot includes the type of values the slot
can have (specified by the Format and the DataType), how
to compute values for the slot (ToCompute), and whether
such computed values are to be physically stored on the
slot, or computed each time as required (Cache). Such
frames will be referred to in this paper as slot-frames.

PluggedInto
IsA: Slot
Description: That which this object is
electrically connected to.
Format: Singleton
DataType: Atom
ToCompute: (lambda (fr) (or (use-rules fr)
(ask-user fr)))
Cache: Never

Figure 2. A frame representing/defining a slot.

The frame of Figure 2 indicates that Pluggedinto can
appear as a slot on any frame. The value associated with
such a slot will name another object (frame) into which the
object is plugged (i.e. electrically connected). The slot
PluggedInto can have only a single associated value which
must be an atom. Whenever a value is required for the slot,
the default procedure is to use the inferencing mechanism
(use-rules), or if this fails, to ask the user. Also, the
value associated with this slot should not be stored (Cache=-
Never) but rather, computed each time it is required,
indicating that the value may change often.

RLL defines three frame access functions: get-value,
put-value and delete-value. Associated with each slot-
frame S, either explicitly or implicitly (through inherit-
ance), are three corresponding access-slots called ToGet-
‘Value, ToPutValue and ToDeleteValue. The function
get-value uses the value stored in the slot ToGetValue of

. the frame for a specified slot whenever a value is required
for that slot. Similarly, put-value and delete-value
access the relevant ToPutValue and ToDeleteValue slot for
instructions of how to store or to delete a value.

The value stored in any of these slots can be arbitrary
functions, which may specify, for example, how inherit-
ance is to be used, or, in the case of deleting values, which
other dependent values need to be deleted. They also allow
statistics relating to the operation of the system to be
maintained; for example, the number of times that a frame
has been accessed can be recorded. If any of these access-
slots is not present, then IsA-inheritance is used to obtain a
value for it. Thus, frames higher up in the hierarchy can
provide these values, allowing the use of defaults.

5. FRAMEUP

FrameUP is an implementation of RLL which incorpo-
rates only those features of RLL which were found to be
appropriate for the implementation of expert systems.
Further, FrameUP provides explicit control strategies for
use in expert systems. It implements a formalism in which
tasks are the basic control structure, and production rules
are the basis of inferencing. FrameUP introduces a mech-
anism and a control regime for the testing and execution of
these production rules. Below we detail the LISP imple-
mentation of the FrameUP system. Then we deal with
those aspects of FrameUP directly related to expert system
construction.

5.1 Frame Representation

In FrameUP a frame is represented as a LISP list, whose
car is the name of the frame, and whose cdr is a list of
associations. This association list connects slot names with
the values stored in the slot. The frame is stored as the
property ‘frame’ of the atom which names the frame. An
example of the representation of a frame is the list:

(DeskLampl (IsA . DeskLamp)
(Status NotOperating)
(Any (ab) (c d)))

which is stored as the property ‘frame’ on the atom Desk-
Lampl. This frame is presented pictorially here as:

DeskLLampl
IsA: DesklLamp
Stawus: (NotOperating)
Any: ((ab) (cd))

From this it is apparent that the slot IsA takes as its
value a single atom. Status appears to take a list of atoms as
its value and Any takes a list of lists. The formal specifica-
tions of the format and data type of these slots is stored in
the corresponding slot-frames:

(IsA (IsA . Slot) (Format . Singleton)
(DataType . Atom))
(Status (IsA . Slot) (Format . List)
(DataType . Atom))
(Any (IsA . Slot) (Format . List) (DataType . List))

The Format slot of these slot-frames specify the
number of values that the slot can have: “Singleton” indi-
cates that the slot can have only one value; “List” indicates
that the slot can have any number of values. The DataType
slot specifies what type of values can be stored in the slot.
The value of the DataType slot is the name of a frame
which has a slot called Predicate having as its value a LISP
predicate function. This function takes one argument and
returns t if the argument is of the correct type, and nil
otherwise. For example, the value of Atom. Predicate might
be (lambda (x) (atom x)), which simply uses LISP’s
build-in atom predicate. The Format and DataType slots
are used to ensure the correct storage of values in slots.

5.2 Basic Access Functions

Three FrameUP functions are defined to provide the base
level access to frames. These are fuplookup, fup:store
and fupremove and would not normally be used by the
end user of the system.
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The primitive retrieval function, fup:lookup takes two
arguments, an atom naming a frame and an atom naming a
slot, and returns the value of:

(cdr (assoc slot (cdr {get frame 'frame))))

That is, from the property list of the atom named frame, get
the property called frame: (get frame 'frame). Find in the
cdr of this list the appropriate slot and return the asso-
ciated value, which is the cdr of the list returned by assoc.
We refer to this returned value as the value of frame.sloz.
This will be nil if either the frame has not been defined, or
the slot does not appear on this frame. The value nil cannot
be stored as the value of a slot.

The function fup:store provides the basic storage facil-
ity. It takes three arguments, being an atom naming a
frame, an atom naming a slot and the value to be stored in
frame.slot. If the frame does not exist, then it is created, and
the slot likewise. Use is made of slot. Format in determining
if the value can be stored. If the Format is “Singleton” and
a value is already stored in frame.slot, then the new vilue
simply replaces the old value. If the Format is “List” and
the new value is already a member of frame.slot, nil is
returned; repeated values not being allowed. Use is also
made of slot. DataType to check the data type of the item
being added. The value returned by fup:store is the new
value of frame.slot or nil if the attempt failed as above.

The function fupremove can take one, two or three
arguments, the first being an atom naming a frame, the
second an atom naming a slot and the third a value. If only
the frame name is given, then that frame is removed from
the system. If a frame name and a slot name are given, then
that slot is removed from the frame, along with all its
values. If a value is also given, then just that value is
removed. Nil is returned if the frame, slot, or value do not
exist. Otherwise, the last argument in the argument list (i.e.
either frame name, slot name or the value) is returned.

5.3 User Access Functions

The top-level functions defined for frame access are get-
value and put-value. Their LISP definitions are given
below. These two functions use information stored on the
slot-frame for the given slot to determine how the slot is to
be accessed. In particular, get-value uses slot. ToGetValue
and put-value uses slot. ToPutValue.

get-value = (lambda (fr sl)

The definitions are straight forward, except for the use
of get-access-fun instead of get-value, in the definition
of get-value. The function get-access-in firstly attempts
to use fuplookup to simply retrieve a value from fr.sl If
this fails, the IsA-hierarchy is traversed until a value is
found; default functions are always stored at the root of the
hierarchy being traversed.

The concept of inheritance is used widely in frame-
based systems. Any frame may inherit slot values from
other frames above it in the hierarchy. In FrameUP, such
inheritance can be finely controlled through the use of the
LISP functions stored in the ToGetValue and ToPutValue
slots. Indeed, values for these slots themselves may be
inherited through the slot-frame hierarchy. A default stor-
age function and a default retrieval function are associated
with these two slots, and are stored as the values of the
ToGetValue and ToPutValue slots of the frame at the root
of the hierarchy of slot-frames. These default functions
carry out the standard steps to be taken in storing or in
retrieving a value.

The default storage function is default-put-value.
This function takes three arguments; an atom naming a
frame, an atom naming a slot, and a value. The first step
performed by default-put-value is to check if the value
argument is of the correct type. This is done by applying
the predicate stored in Slot. DataType. Predicate to the supp-
lied value. (The notation A.B.C refers to the slotnamed C
which appears on the frame which is named by the value of
A.B) If the value is of the correct type, then fup:store is
used to store it.

The default retrieval function is default-get-value,
which takes, as arguments, two atoms, naming a frame and
a slot, and returns the value of frame.slot. The value so
returned may have been determined in one of a number of
ways. Firstly, default-get-value uses fup:lookup to see if
a value is stored for the specified slot. If this straight
forward lookup succeeds, then that value is returned. Oth-
erwise the result of (get-value slot ' ToCompute), which
is expected to be a function, is applied to the atom naming
the frame. The value so computed is returned as the value
of the function default-get-value.

If a non-null value is found by default-get-value, then
a caching mechanism may be employed. Caching is the
storing of values so that they need not be computed each
time they are required (Lenat, Hayes-Roth and Klahr,
1983). FrameUP allows caching to be controlled dynami

(apply (get-access-fn sl 'ToGetValue) fr sl))

pﬁt-value = (lambda (fr sl va)

(apply (get-value sl ’ToPutValue) fr sl va))

get-access-fn =
(lambda (fr sl)

(or (fup:lookup fr sl)
(get-access-fn (fup:lookup fr *IsA) s1)))

Figure 3. Definition of get-value and put-value.
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cally, and specified individually for each type of slot. The
function cachep is defined in FrameUP as a predicate
which takes two arguments; the first an atom naming a
frame, the second an atom naming a slot. It returns a
non-null value if caching is to be carried out for any new
values determined for frame.slot, using the value of slot. C-
ache to determine this. It does this as follows: Suppose the
value of (get-value slot ‘Cache) is X; then cachep will
return t if X is the atom Always, or nil if X is the atom
Never. If X is neither, then it is assumed to be a predicate
function which is applied to frame. Cachep will return the
result of this application. For a given frame and slot, if
cachep returns a non-nil value, then default-get-value
will put-value the computed value in frame.slot.
Consider the example of (get-value DeskLampl
Pluggedinto). Looking at Figure 2 shows that no ToGer-
Value is specified and so the default will be used —
default-get-value — which is inherited from the frame
illustrated in Figure 4 below (since PluggedInto is a Slot).

Default-get-value’s straightforward lookup of DeskLamp1.-

Pluggedinto fails, so the function stored in PluggedInto.
ToCompute is applied to DeskLampl. The result of this
application, if non-null is returned as the value of
DeskLamp1. Pluggedinto.

Slot
IsA: GenericFrame
Cache: Never
ToGetValue: default-get-value
ToPutValue: default-put-value

Figure 4. The generic slot.

In general, the ToCompute slot may specify thata value
can be computed by some formula, or obtained from some
database, or that the user is to be asked for a value, etc.
This allows a great deal of dynamic flexibility in how
values are to be determined.

5.4 Tasks: The Basic Control Structure

FrameUP, like RLL, employs tasks to represent units of
action. The tasks are queued, waiting in an agenda until
they are called upon to carry out the action they represent.
These actions define the top level functionality of the
system. The tasks typically deal with some slot of some
frame, and may require the system to check whether the
slot has a particular value, or to attempt to determine a
value for the slot. In so doing, sub-tasks may be set up and
placed on the agenda. The parent task will be completed
only after all sub-tasks have completed.

The structure of a task-frame is illustrated in Figure 5.
The frame and slot upon which this task is to act is identi-
fied by the RelevantFrame and RelevantSlot slots of the
task-frame; in this case DeskLampl and ReasonForNot-
Operating respectively. Task! is required to find a value
for DeskLamp1. ReasonForNotOperating,i.e. to fill the slot.

For each type of task known to the system, of which
FillSlot is one example, there is an associated frame which
defines the steps required to effect the task. This task

Task1l
IsA: Task
TypeOfTask: FillSlot
RelevantFrame: DeskLampl
RelevantSlot: ReasonForNotOperating

Figure 5. A typical example of a top-level task for HEFFE.

definition will be in terms of the primitives: get-value and
put-value. The Procedure slot of Figure 6 depicts the type
of definition used to implement a task in FrameUP. In
carrying out a task of this type, most of the work is done by
get-value, so that, for example, Task1 involves evaluat-
ing (get-value DeskLampl ReasonForNotOperating).
The result of applying the function stored on the Procedure
slot will be a value, which will be stored on the given slotif
that slot definition specifies caching.

FillSlot
IsA: TypeOfTask
Procedure: (lambda (task)
(get-value
(get-value task ’RelevantFrame)
(get-value task ’RelevantSlot)))

Figure 6. A frame representing a type of task which HEFFE can carry
out.

FrameUP provides three types of tasks: FillSlot,
CheckSlot and FillSlotWithGivenValue (see Figure 7 for
the latter two). These have been found to be sufficient for the
implementation of an expert system. A task of type
CheckSlot compares the value of a given slot of a given
frame with a given value; the compared value and the
given frame and slot are all specified by the task. A task of
type FillSlotWithGivenValue simply calls put-value to
store a value for a slot and frame; which are specified by
the task.

CheckSlot
IsA: TypeDfTask
Procedure: (lambda (task)
(let
((Fr = (get-value task ’RelevantFrame))
(S1 = (get-value task ’RelevantSlot))
(Aval = (get-value Fr S1))
(Rval = (get-value task ’RequiredSlotValue)))
(or (equal Rval Aval) (member Rval Aval))))

FiliSlotWithGivenValue
IsA: TypeOfTask
Procedure: (lambda (task) .
(put-value (get-value task ’RelevantFrame)
(get-value task ’RelevantSlot)
(get-value task ’GivenSlotValue)))

Figure 7. Task types.

The agenda, also implemented as a frame, provides a
control mechanism for scheduling tasks. Its function is to
order the tasks that are placed upon it and, once one task is
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finished, to provide another task for execution. The order-
ing of tasks on the agenda can be specified as a function of,
for example, an estimate of the amount of time required for
the task, the importance of the task, and the other tasks on
the agenda. In HEFFE, for example, the agenda simply
stores tasks in the order in which they are placed on the
agenda, but with sub-tasks of a current task being placed
ahead of other tasks.

5.5 Rules: Their Representation and Use

Rules are used in FrameUP to carry out inferencing. A rule
is represented as a frame having an if-slot and a then-slot,
amongst others. The individual conditions of the if-slot
and the individual conclusions of the then-slot are of the
form [frame slot value], and might be compared with the
associative triplets of MYCIN, which have the form
(object attribute value) (Barr and Feigenbaum, 1982). Var-
iables are denoted as atoms beginning with a ‘$”.

Figure 8 illustrates a rule, which is read as: “If an object
(denoted by the variable $Object), which is not operating
(this is implicit in the rule, but made explicit by the context
in which the rule is used), is known to be sound (i.e.
functionally OK) and currently connected to some power
supply, then pass the blame for the object not operating on
to the power supply, which apparently is not operating”.
The semantics of this rule in FrameUP are as follows: If
Sound is a value for $Object. Status and $PowerSupply is
the value of $Object.Pluggedinto, then the new values
$PowerSupply and NotOperating can be deduced for
$Object. ReasonForNotOperating and $PowerSupply.Sta-
tus respectively.

Rulel
IsA: Rule
If: (($0bject Status Sound)
($0bject PluggedInto $PowerSupply))
Then: (($0bject ReasonForNotOperating $PowerSupply)
($PowerSupply Status NotOperating))

N
Figure 8. An example rule from HEFFE to deduce why some object is
not operating.

Rules are often written in terms of variables, which
need to be bound to actual objects. Binding can occur at
two different stages, depending upon the context in which
the rule was called upon. Toillustrate, consider the current
context to be the task of finding a value for Desk-
Lampl.ReasonForNotOperating. Rulel is known to con-
clude a value for this slot for any $Object. Thus Rule1 will
be invoked with $Object bound toDeskLampl. $Power-
Supply will be bound to PowerPoint1 when the conditions
of this rule are evaluated. A stack of bindings is used to
allow for the recursive usage of a rule.

Formally, the triplet [fr sl va] appearing as a condition
on a rule has the semantics thatif vais a variable then that
variable will be bound to the value of (get-value. fr sl);
otherwise va is required to be the, or a (depending upon the
Format of sl), value of (get-value fr sl). If this is not the
case then the condition is said to fail, and the rule in turn
cannot be used in the current situation.

Triplets appearing in the condition of a rule will lead to
anew task of type CheckSlot being created when the rule
is called upon. These tasks will be executed in turn, unless
one of them fails, in which case the remaining tasks asso-
ciated with this rule are removed from consideration.
These associated tasks are identified by the value of one of
their slots (the ParentTask slot).

A triplet appearing as a conclusion of a rule has the
semantics of (put-value fr sl va). All variables at this
stage should have bindings. Each triplet in the conclusion
leads to a new task being created, the task type being
FillSlotWithGivenValue.

A rule is referenced by those slot-frames which are
named as slots in the conclusion triplets of the rule. The
above rule, for example, has two conclusions, naming the
slots ReasonForNotOperating and Status. Thus, the slot-
frames ReasonForNotOperating and Status will list
Rulel under a slot named Rules. The rule will be called
upon whenever the ToCompute slot specifies that the Fra-
meUP function use-rules is to be used.

The function use-rules takes two arguments, an atom
naming a frame and an atom naming a slot. It accesses the
list of rules stored as slot. Rules and considers each rule in
turn. For each rule it sets up the subtasks for each triplet of
the if-slot, causing them to be executed in turn. If any of
them fails, then the next rule in the list is considered. If the
subtasks all succeed, then subtasks for each triplet of the
then-slot are set up and executed. Nil is returned if all rules
fail. The supplied frame name is used to bind variables
where appropriate.

This then is an implementation of the basic expert
system type of inferencing, where all actions are expressed
in terms of frames, slots and values.

5.6 Other Means for Determining Values in FrameUP
The use of rules is not the only means available for com-
puting values of slots. In general, any function can be
placed in the ToCompute slot of a slot-frame. The prede-
fined function use-rules is just one of an assortment of
possible ToCompute methods.

Two others which are defined in FrameUP provide
interactive question answering services. The function
suggest-to-user is used, for example, whenever the user
is to be asked if a particular value is true for some frame.s-
lot. Ask-from-user is used when the user is to be asked for
a value for some frame.slot.

The ability to specify any function at all for the value of
the ToCompute slot allows great flexibility. One can spec-
ify that the relevant rules be tried first followed by asking
the user. If both fail then perhaps an algorithm might be
called upon. Or perhaps what is required is a value from
some external data base. The usefulness of this kind of
flexibility has been demonstrated in the GEM expert sys-
tem (Williams, Nanninga and Davis, 1986).

6. AN EXAMPLE — HEFFE =
A typical goal of a consultation with a diagnostic type

expert system is to determine why some. object is not

operating. The goal in the following example is to deter-
mine why the object DeskLampl (of Figure 1) is not
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operating. The example is drawn from the HEFFE system,
an expert system programmed in FrameUP.

HEFFE begins by creating, under the direction of the
user, a task of type FillSlot (Figure 5), which attempts to
determine a value for the ReasonForNotOperating slot of
DeskLampl1. This task will be placed on the agenda, and
waits there to be selected for execution by the scheduler.
Executing a task involves applying the Procedure for the
particular type of task to the task in question. Figure 6
shows that this results in (get-value DeskLampl
ReasonForNotOperating) being evaluated for this par-
ticular task.

There is no value stored for DeskLampl.ReasonFor-
NotOperating and so the function get-value calls upon the
frame ReasonForNotOperating to supply the means for
computing a value (Figure 9). This causes the rules to be
used in an attempt to determine a value. It is also noted that
the relevant rules are listed in this frame.

ReasonForNotOperating
IsA: Slot
Format: Singleton
DataType: Atom
Cache: Always
MakesSenseFor: Object
ToCompute: (lambda (fr)
(use-rules fr ’ReasonForNotOperating))
Rules: (Rulel Rule3)

Figure 9. ReasonForNotOperating. Typically, a fault-finding system
attempts to determine a value for this slot on some particular frame.

Rulel may be chosen for execution. This rule (Figure 8)
has two conditions, resulting in two tasks being created.
These are Task2 and Task3 (Figures 10 and 11).

Task2
IsA: Task
TypeOfTask: CheckSlot
A ParentTask: Taskl
RelevantFrame: DeskLampl
RelevaniSlot: Status
RequiredSlotValue: Sound

Figure 10. Task 2 — Is the desk lamp sound?

Task3
IsA: Task
TypeOfTask: CheckSlot
ParentTask: Taskl
RelevantFrame: DeskLampl
RelevantSlot: PluggedInto
RequiredSlotValue: $PowerSupply

Figure 11. Task3 — Is the desk lamp connected to power point number
1.

Task?2 is to check if sound is a value of DeskLamp1.S1a-
tus. Finding that it isn’t (Figure 1), the function stored on
Status. ToCompute (Figure 12) is applied to the atom
DeskLampl. Again the rules are to be tried, with Rule2

(Figure 13) being chosen from the three candidate rules.
The premise of this rule results in another task being
created (Figure 14), which is to determine if DeskLamp1
operates from some PowerSupply. Suppose, for simplicity,
that Operates From. To Compute specifies that the user be
asked for a value, and the user supplies the atom Power-
Point2. Task5 is then created to handle the conclusion part
of Rule2 which deduces that DeskLamp1 is Sound. Eva-
luating Task5 results in Sound being stored on Desk-
Lampl.Status. Thus Task2 has successfully been
completed.

Status
IsA: Slot
Description: “"Current known status of object"
Format: List
DataType: Atom
Cache: Always
ToCompute: (lambda (fr)
(or (use-rules fr ’Status)
(ask-from-user fr ’Status)))
Rules: (Rule2 Rule4 Rulel)

Figure 12. Status — A slot-frme.

Rule2
IsA: Rule
If: (($0bject OperatesFrom $PowerSupply))
Then: (($0bject Status Sound))

Figure 13. Rule 2 — Determine whether an object is sound.

Task4
IsA: Task
TypeOfTask: CheckSlot
ParentTask: "Task2
RelevantFrame: DeskLampi
RelevantSlot: OperatesFrom
RegquiredSlotValue: $PowerSupply

Figure 14. Task4 — does the desk lamp work when plugged into another
power point.

Task5
IsA: Task
TypeOfTask: FillSlotWithGivenValue
ParentTask: Task2
RelevantFrame: DeskLampl
RelevantSlot: Status
GivenSlotValue: Sound

Figure 15. Task5 — The desk lamp is sound.

Task 3 is to determine the value of DeskLampl.
Pluggedinto. The value found there is PowerPoint1, which
is bound to the variable $PowerSupply. The task succeeds.

Task2 and Task3 having succeeded, two new tasks,
corresponding to the conclusion part of Rule1 are created.
Task6 corresponds to having deduced that the reason for
DeskLamp1 not operating is that PowerPoint1 is, for some
reason, not operating. Task6 will return the value Power-
Point1. Similarly, Task7 corresponds to having deduced
that PowerPoint1 is not operating.
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Task6
IsA: Task
TypeOfTask: FillSlotWithGivenValue
ParentTask: Taskl
RelevantFrame: DeskLampl
RelevantSlot: ReasonForNotOperating
GivenSlotValue: PoverPointl

Figure 16. Task6 — Return a value to the calling rule.

Task?
IsA: Task
TypeOfTask: FillSlotWithGivenValue
ParentTask: Taski
RelevantFrame: PowerPointl
RelevantSlot: Status
GivenSlotValue: NotOperating

Figure 17. Task7 — Store a given value in the given slot.

All tasks associated with Rulel have now successfully
completed, and so Taskl has succeeded in determining
PowerPoint1 as the value of ReasonForNotOperating for
DeskLamp]l.

The structure of the above sample execution of Task1 is
summarised in Figure 18. To sum up, we have seen that to
determine why DeskLamp1 is not operating we use Rulel
to deduce that it must be because PowerPointl is not
operating. This is due to the fact that DeskLampl can be
shown to be sound, using Rule2. This involved asking the
user whether the desk lamp operates from some other
power point.

premise|~===-= >Task4

|
[--=--- >Task2----Rule2--~-|

premisel |
|om——— >Task3 conclusion|~=----- >Task5

N |
Taskl ----Rulel----|
|

|====== >Taské
conclusion]|

|-mmmmm >Task7

Figure 18. Summary of the tree of tasks.

The next task for the expert system will be to determine
why PowerPoint1 is not operating. A similar approach will
be taken in executing this task, using any appropriate rules.

7. SUMMARY

FrameUP is a frames-based system for the representation
of knowledge in expert systems. It provides the machinery
for representing, amongst other things, objects, rules and
task structures. It provides, through the task and ToCom-
pute structures, a flexible and easily modifiable mecha-
nism for the solving of problems which are posed in terms

of frames and slots. Various types of knowledge are also
made quite explicit, through, for example, associating
rules with particular frames, and with particular slots on
the frames. The resulting flexibility is an essential facility
for expert systems.

The hierarchical structure of frame-based systems has
provided a natural structure for the storage of knowledge,
allowing for the inheritance of rules, slot values and the
ToCompute mechanism. The hierarchical structure also
provides contextual information into which knowledge
can be appropriately slotted.

The use of slot frames-provides a mechanism for speci-
fying the fine control over the operation of the system. Itis
possible, for example, to independently specify how inher-
itance is to be used, and how to retrieve, store and compute
values for individual slots. Information is neatly packaged
providing easy access for modification to the system. Also,
a variety of problem solving methods can be employed by
the system.
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