Title:
On-line Unsupervised Outlier Detection Using Finite Mixtures
with Discounting Learning Algorithms

Contact Author:
Kenji Yamanishi

Affiliation / Address:
Internet Systems Research Laboratories, NEC Corporation
4-1-1 Miyazaki, Miyamae, Kawasaki, Kanagawa 216-8555, Japan.
e-mail: k-yamanishi@cw.jp.nec.com
phone: +81-44-856-2143
fax: +81-44-856-2231

On-line Unsupervised Outlier Detection Using Finite Mixtures
with Discounting Learning Algorithms

Kenji Yamanishi*, Jun-ichi Takeuchi*, Graham Williams** and Peter Milne**

*Internet Systems Research Laboratories, NEC Corporation, Japan
(k-yamanishi@cw.jp.nec.com, tak@ap.jp.nec.com)
**CSIRO Mathematical and Information Sciences, GPO Box 664, Canberra ACT 2601, Australia

(Graham.Williams@cmis.csiro.au, Peter.Milne@cmis.csiro.au)

October 2001

Abstract

Outlier detection is a fundamental issue in data mining, specifically in fraud detection,
network intrusion detection, network monitoring, etc. SmartSifter is an outlier detection
engine addressing this problem from the viewpoint of statistical learning theory. This
paper provides a theoretical basis for SmartSifter and empirically demonstrates its effec-
tiveness. SmartSifter detects outliers in an on-line process through the on-line unsuper-
vised learning of a probabilistic model (using a finite mixture model) of the information
source. Each time a datum is input SmartSifter employs an on-line discounting learning
algorithm to learn the probabilistic model. A score is given to the datum based on the
learned model with a high score indicating a high possibility of being a statistical out-
lier. The novel features of SmartSifter are: 1) it is adaptive to non-stationary sources of
data; 2) a score has a clear statistical/information-theoretic meaning; 3) it is computa-
tionally inexpensive; and 4) it can handle both categorical and continuous variables. An
experimental application to network intrusion detection shows that SmartSifter was able
to identify data with high scores that corresponded to attacks, with low computational
costs. Further experimental application has identified a number of meaningful rare cases

in actual health insurance pathology data from Australia’s Health Insurance Commission.

The material in this paper was presented in part at the Sixth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining [25], August 20-23, 2000, Boston, MA, USA

1 Introduction

1.1 Outlier Detection Problem

The problem of outlier/anomaly detection is one of the most fundamental issues in data
mining. Specifically, it is closely related to fraud detection problems such as credit-card
fraud detection, network intrusion detection, fraudulent cellular call detection, insurance
fraud etc., since criminal or suspicious activities may often induce statistical outliers.[24]

We focus on the issue of on-line unsupervised outlier detection. That is, we require
the following conditions for outlier detectors:

1) Outliers are detected based on unsupervised learning of the information source. In
general statistical approaches to fraud detection one first learns an underlying model
of the mechanism for data-generation from examples and then evaluates how much a
given input datum deviates from the model (see e.g., [2],[12]). We require here that the
learning process be unsupervised, i.e., one has to learn the model under the situation
where training examples are not labeled with regard to whether each datum is fraudulent
or not. This is in contrast to the supervised learning approach (see, e.g., [4],[3],[18],[23]),
in which one first learns classification rules from labeled examples to predict a label for
future examples. Although the supervised learning based approach is popular in fraud
detection and intrusion detection, the unsupervised learning approach is not only more
technically difficult but also more practically important, since in real situations (A) a
sufficient number of labeled examples might not be available, and (B) a new fraud or
intrusion pattern which didn’t appear in past data may possibly emerge in future data.
There is relatively little work (e.g. [4]) on fraud detection based on unsupervised learning.

2) The process is on-line. That is, every time a datum is input, it is required to
evaluate how large the datum is deviated relative to a normal pattern. In contrast, most
existing work on outlier detection (e.g., [2],[13],[14],[17],[18],[23]) in statistics and data
mining is concerned with batch-detection processes, in which outliers can be detected
only after seeing the entire dataset. The on-line setting is more realistic when one deals
with the tremendous amount of data in network monitoring, fraudulent cellular phone

call detection, health insurance claims, etc. It is also more natural in such situations as

the data by nature becomes available over time and it is important to identify deviations
as they arise.

Note that there exists relatively little previous work (e.g. [4]) focusing on the on-line
unsupervised learning based approach. This paper, on the basis of statistical learning the-
ory, introduces SmartSifter, which meets requirements 1) and 2) and has some superiority
over the program in [4]. Moreover, through SmartSifter, we offer a general framework for

on-line unsupervised outlier detection applicable to a variety of data mining tasks.

1.2 Overview of SmartSifter
The approach of SmartSifter is as follows:

I) SmartSifter uses a probabilistic model as a representation of an underlying mechanism
of data-generation. The model takes a hierarchical structure. A histogram density with a
number of cells is used to represent a probability density over the domain of categorical
variables. For each cell a finite mizture model is used to represent the probability density
over the domain of continuous variables.

IT) Every time a datum is input SmartSifter employs an on-line learning algorithm to
update the model. For the categorical domain we have developed the SDLE (Sequentially
Discounting Laplace Estimation) algorithm for learning the histogram density (Sec.2.1).
For the continuous domain we have developed the SDEM (Sequentially Discounting Fz-
pectation and Mazimizing) algorithm (Sec.2.2) for learning the finite mixture model. The
most important feature of these two algorithms is that they gradually discount the effect
of past examples in the on-line process.

IIT) SmartSifter assigns a score to each input datum on the basis of the learned model,
measuring the change to the model after learning. A high score indicates a high possibility
that the datum is an outlier.

The novel features of SmartSifter are summarized as follows:

a) SmartSifter is adaptive to non-stationary sources. In conventional statistical ap-
proaches it is usually assumed that an underlying information source for data-generation
is stationary [2]. This is, however, not realistic when one deals with drifting sources or

time-series data. The discounting algorithm employed by SmartSifter learns from the

source and forgets out-of-date statistics of the data using a decay factor. Thus it is ex-
pected to be adaptive to non-stationary sources.

b) A score calculated by SmartSifter has a clear statistical/information-theoretic mean-
ing. In most previous work a score is calculated using heuristics such as cost [5],[9],
lacking statistical justification, while the Mahalanobis distance [2] and the quadratic dis-
tance [9],[13] have been used to score outliers in some work. SmartSifter defines a score
for a datum in terms of a statistical distance. This distance measures the changes in the
distribution learned from the data before and after the new datum is incorporated. Thus
it is natural to interpret that a datum of high score is, with high probability, an outlier.

c) SmartSifter is computationally inexpensive. The computational complexity of Smart-
Sifter for calculating a score for each datum is linear in the number of parameters in the
model and cubic in the number of variables. For example, SmartSifter can process about
90,000 data with four attributes in 28 seconds (Pentium III 550MHz). d) SmartSifter
can deal with both categorical and continuous variables. To our knowledge SmartSifter
is the first on-line unsupervised outlier detector that can deal with both categorical and
continuous variables.

The design of SmartSifter was inspired by the work by Burge and Shawe-Taylor [4].
Our work differs from [4] in the following regards: 1) SmartSifter treats both categorical
and continuous variables while [4] deals only with continuous variables. 2) While [4] uses
two models in the algorithm: the long term model and the short term model, SmartSifter
unifies them into one model resulting in a clearer statistical meaning and lower compu-
tational cost. 3) SmartSifter uses either a parametric representation for a probabilistic
model or a kernel representation, while only a kernel representation is used in [4]. In Sec
3.1 we compare our parametric method with the kernel method to show that the former

outperforms the latter both in accuracy and computation.

We empirically demonstrate the practical effectiveness of SmartSifter using the net-
work intrusion dataset (KDD Cup 1999) [26]. Although it was used in the context of a
supervised intrusion detector learning problem in KDD Cup 1999, we use it for on-line
unsupervised intrusion detection. In our experiments, using a network access log dataset

of 458,078 accesses including 1687 intrusions, SmartSifter detects 55% of all intrusions

within the top 1% of the datums ranked by the SmartSifter score. Further, 82% of all
intrusions are included within the top 5% of SmartSifter ranked datums.

We also used a health insurance pathology dataset supplied by the Australian Health
Insurance Commission to demonstrate that SS was able to identify several meaningful
rare cases.

The rest of this paper is organized as follows: Section 2 describes algorithms developed
for SS. Section 3 illustrates SmartSifter in action through its application to network
intrusion detection (3.1), rare event detection in a medical insurance dataset (3.2), and

simulation results (3.3). Section 4 contains our concluding remarks.

2 Outline of SmartSifter

2.1 Overall Flow of SmartSifter

Let (x,y) denote a datum where x denotes a vector of categorical variables and y denotes
a vector of continuous variables. We write the joint distribution of (x,y) as p(x,y) =
p(x)p(y|x). We represent p(x) using a histogram density with a finite number of disjoint
cells (Sec.2.1), and for each cell, for all x’s that fall into it, we represent p(y|x) using
an identical form of a finite mizture model (Sec.2.2). Hence we prepare as many finite
mixture models as there are cells in the histogram density.
Consider the situation where a sequence of data is given in an on-line process: (x1,¥y1), (X2,y2) - - -.

The fundamental steps of SmartSifter are:

1. Given the tth input datum (x;,y:) identify the cell that x; falls into and up-
date the histogram density using the SDLE algorithm (Sec. 2.1) to obtain p®(x).
Then, for that cell, update the finite mixture model using the SDEM/SDPU al-
gorithm (Sec.2.2) to obtain p*)(y|x). For other cells, set p*) (y|x) = pt—(y|x).

2. Calculate a score for the datum on the basis of the models before and after updating

(Sec.2.3).

2.2 Categorical Variables

Below we describe how to learn the histogram density over the categorical domain. Let
the number of categorical variables be n. Let the range of the ith categorical variable
be A®) = {agi), oo, aD} (i =1,--+,n). Partition it into a finite number of disjoint sets:
(AP ADY (i =1,---,n), where AV N AP =0 (j # k) and AD = U¥ AV This
partitioning is done in order to reduce the complexity of the task. Within the resulting
multidimensional space defined over the n categorical variables, each with v; partitions,

we identify the cell A x - x A™ as the (ji, -, jn)th cell. We have k = vy X -+ X v,

cells in total. This provides a partitioning of the domain.

Given such a partitioning of the domain a histogram density forms a probability dis-
tribution which takes a constant value on each cell. The histogram density is specified
by a parameter 0 = (qi, - - -, qx) where Zle ¢; =1, g; > 0 and ¢; denotes the probability
value for the jth cell. If there are L; categorical variables in the jth cell, the probability
value of each symbol x in it is given by p(x) = ¢;/L;.

We introduce here the SDLE algorithm. This is a variant of the Laplace law (1775) (see
[15]) by which one estimates the probability value over a discrete domain with p(a) =
(To + B)/(T + Mp) for each domain element a where 0 < 3 < 1, T is the size of a data
sequence, 1, is the number of occurrences of @ in the sequence, and M is the number
of elements in the discrete domain. The SDLE algorithm is obtained by modifying the
Laplace law so that (A) it is run on-line; and (B) it can discount the effect of past examples
gradually.

The SDLE algorithm is specified by a discounting parameter r,(> 0) where a smaller
rp, indicates that the model is influenced more by past examples (see Fig.1). The estimator

p(a) in the Laplace law is replaced with

sa) = T, + 3
PO = =) ra+ kB

Usually 7}, is set between 0.01 and 0.001. The Laplace law is reduced to the case of r, = 0
in SDLE.
Computationally the total number of cells increases exponentially in the number of

categorical variables. In order to avoid this computational difficulty we sometimes use

5

SDLE Algorithm

A partitioning of the domain {Agi), e ,Ag,?} (1=1,---,n), rp, and (3 are given.

Step 1. /* Initialization */
Let T(Jl”]n):O (1 S]Z Svi, Zzla,n)
t:=1

Step 2. /* Parameter Updating */
while t <T (T': sample size)
Read x; = (21, -+,)

For each (j1,---,jn)-th cell,

Ti(j1, -5 dn) = (1 =71a)Ti=1(j1, 5 Jn) +0:e(d1, 5 dn)
Ti(j1, - Jn) + 8
(1= (1 =rp)t)/rn + kB

(1) (2) (n)
For each x € A]-1 X A]-2 X "'Ajn ,

q(t)(jla e ,]n) =

OIZ

Oy @Y1, dn)

p(x) 1= -
LA&H-LA?H--ﬁfﬁﬁH

2

where 6;(j1,*+,jn) = 1 if the t-th datum falls into the (ji,---,jn)-th cell, and
0¢(j1,- -+, jn) = 0 otherwise.
ti=t+1

Figure 1: SDLE Algorithm

heuristics for margining cells in order to drastically reduce the number of cells. For
example, we estimate the probability for each cell from training examples and then merge
all cells whose probability values are lower than a predetermined threshold into a single

cell.

2.3 Continuous Variables

Now we describe how to learn the model over the continuous domain. We consider two
versions: a parametric version and a kernel version. The parametric version is referred to

as SS while the kernel version is referred to as SS*.

2.3.1 Parametric Version

In the parametric version we employ as a finite mixture model over the continuous domain
a Gaussian mirture model written as:
k
p(ylf) = Zcip(}",uia A;),
i=1
where k is a positive integer, ¢; > 0, X% ; ¢; = 1 and each p(y|u;, A;) is a d-dimensional
Gaussian distribution with density specified by mean p; and covariance matrix A;:

1 1 _
p(y|pi, As) = LRIV exp (—5(}’ —) ATy — Mz‘)) ;

where i = 1,-- -, k and d is the dimension of each datum. We set 8 = (cq, pt1, A1, -« -, Ck, fg, Ak)-
The Gaussian mixture is very popular in statistical modeling [19] because it is very ex-
pressive and its efficient learning algorithms have been extensively explored in the areas

of statistics and machine learning.

First, we review the incremental EM algorithm [21] for learning Gaussian mixture

models. Letting s be an iteration index, we define sufficient statistics Si(s) (t=1,--,k)
by
gl _ (C(S),ﬂ(S)’]\(S))
a1 60 S Al ~
u=1 u=1 u=1
where
(s—1) (s—1) 4 (s—1)
s def G P(Yulps A
) & o ;)

= Zl?_l C(s—l)p(yULu(s—l) A(S—l)) .
We also define Si(s) (v) (i=1,---,k) for y, by

€ 1 S S S
SO GO ORI OB B
The incremental EM algorithm for Gaussian mixture models consists of the following
E-step and M-step [21]:
E-step: Choose a datum y, from the sequence y*. Given #¢~Y compute

1

SO() = 1+ (10,1 @)y 1 () yuy?).

Then, set S =gt~ — 561 (y) 4 5C)(4), (2)

M-step: Compute the new estimate 6¢®) by

s _(s s s 1 (s s s s)T
) = 19 and A = KO —

2

The point is that in the E-step the sufficient statistics S©®~Y is updated relative to an
arbitrarily chosen y,. By repeating the iteration of the E and M steps w.r.t.s, 8 con-
verges.

We introduce here the SDEM algorithm by modifying the incremental EM algorithm
as follows:

(A) Choose y, in time order, i.e., choose y; at the sth round in the E-step. Make only
one iteration of the E and M steps for each s. This makes the parameters updated
every time a datum is input.

(B) Introduce a discounting parameter r (0 < r < 1) to modify the updating rule (2)

into the following:

S¥ = (1 =188V - (v(5), 1 (8)y5s 1 (5)ysyT),

This rule makes the statistics exponentially decay with a factor (1 —r) as the stage
proceeds. Hence it can forget out-of-date statistics rapidly, and thus makes the

convergence faster than the incremental EM algorithm.

Below we describe a general form of the modified algorithm:

SDEM algorithm
E-step: Given SV, 961 and y,, compute S by (1) and (3).
M-step: Compute the new () by (3).

Note: If the modification is (B) only, without (A), we obtain the algorithm proposed by
Nolan (see e.g. [21]).
The details of the SDEM algorithm are in Fig. 2. in which a parameter « is introduced

in order to improve the stability of the estimates of ¢;, which is set to 1.0 ~ 2.0. Usually

&

=1/k and ugo)s are set so that they are uniformly distributed over the data space.

SDEM Algorithm (r,a,k: given)
Step 1. /* Initialization */
Set u@(o)’ CEO),/EZ(O),AZ(O),[_\z(-O) (i=1,..,k).
t:=1
Step 2. /* Parameter Updating */
while t <T (T:sample size)
Read y;
fori=1,2,...,k

(t—1) (t—1) (t—1)
(t) — (1 o CYT') Ci p(yt“"z ’Ai) ar

- - .t
Sh L plyelu Ay R
cz(t) =(1- r)cgt_l) + rfy-(t)

) =1 =ra ™ £y

MZ(t) — ﬂgt) cit)

]\Z(t) =(1- r)]&z(t Dy r'yi(t) Viyr

Agt) — /—\Z(t Cgt) Mgt)ugt)T
t:=t+1

Figure 2: SDEM Algorithm

The computation time for the SDEM algorithm at each round is O(d3k) where d is
the dimension of the data and k£ is the number of Gaussian distributions.

The discounting parameter r is related to the degree of discounting past examples.
Intuitively, smaller r is, a larger effect the SDEM algorithm has from past examples. It
is easily checked that cz(-t) is the weighted sum of %(j) wort. j where the weight for j is
(1 — 7)*Jr and that x” and A" are the parameter values that maximize the weighted
sum of log likelihood of log p(y |, A;) w.r.t. j where the weight for j is (1 — r‘)t’jr’yi(j).

In the case of r = 1/t, the SDEM algorithm is equivalent with the original EM algorithm.

2.3.2 Kernel Version

In the kernel version we employ as a finite mixture model over the continuous domain a

kernel mixture model:

1 K
p(yle) == w(y: a), (3)

KD
where K is given, ¢ = {q1,- - -, gk } is called a set of prototypes, w(- : ¢;) is a kernel function
defined as a Gaussian density with mean ¢; and variance matrix ¥ = diag(o?,- - -, 0?) for

a positive constant o, and d is the dimension of a datum.

The difference between the parametric version and kernel one is that the coefficient
vector and the variance matrix for a finite mixture are variable in the former version,
while they are fixed in the latter one. In general the number of prototypes for the kernel
version should be set much larger than the mixture size for the parametric one.

We introduce here the SDPU (Sequentially Discounting Prototype Updating) algorithm
for on-line learning prototypes in the kernel mixture. For a given data sequence y! =

y1i- Yy, first define:

fiyly") ZA (t, Tw(y : yr),
where A(t, 1) ey A(t,T) dof r(l—r)"!forr <t—1and 0 <r < 1is a discounting
factor. Note that 3¢_, A(¢,7) = 1 holds. Hence f(y|y’) is a weighted sum of w(y

y-) (1 =1,---,t) where the weight becomes large as 7 increases. Next define the square

error of p(y|g) to f(y|y") b
&(q:y") :/(p(Y|lJ) —f(y\yt))Qdy-

For a new input y,,, the SDPU algorithm updates a prototype ¢} into ¢ + Ag® by
choosing Ag® so that €2(¢) +A¢® : y'y,,1) is minimal under the condition that €(q : y*)
is minimized by ¢ = ¢®.

Several steps (omitted here) lead that Aq¢® must satisfy linear equations

Z W aAdn =BY (k=1,..,K,l=1,..4d), (4)

def o1—qP2 ®_ ()2
where BY) % 1, (K - (w11, — qff)) exp(— 2 50) = K (¢ — ¢ff)) exp(—%%1)) and
|q(t) (f)|2

) exp(— —421—). Here le denotes the [th component of

o (s IR IO Sy)
jmkl — \Yml 202

qk). Thus A¢® is obtained by solving (4). This can be done using a standard algorithm
for solving linear equations. The details of the SDPU algorithm are shown in Fig.3.
Note: The computation time for the SDPU algorithm at each round is O(d*K3) where
d is the dimension of data and K is the number of prototypes. The SDPU algorithm
coincides with Grabec’s algorithm [10] in the case where we let r be time-dependent as

r=1/t.

10

SDPU Algorithm (r,0, K: given)
Step 1. /* Initialization */
Set ngo) (1 =1,...,K) so that they are uniformly distributed.
t:=1
Step 2 /* Prototype Updating */
while t <T (T:sample size)
Read xy
for all (j,m, k,1)
)|2

By = r(K - (@10 — g5 exp(— %)
: : (B)_ ()2
- Zilil(qgl) - QI(cl)) exp(— %))
(Here q,(ctl) denotes the [th component of q,(ct))
(t) ((®) (t))((t) (t)) (t) _ (t)‘2
Cmrr = Omi —

el — em djm)exp(lay,
Solve the linear equation:), ¥ Aq (t) =](cl)

202 402)

Jym ~ jmkl
(k=1,..,K,l=1,..,d) for all (j,m)
qgf:l) = qj(% + Aq(t)
t:=t+1

Figure 3: SDPU Algorithm
2.3.3 Burge and Shawe-Taylor’s Algorithm

The kernel version of SmartSifter can be thought of as a variant of Burge and Shawe-
Taylor’s algorithm [4] in the sense that they are both based on Grabec’s algorithm. Major
differences between them are 1) methods of discounting past examples and 2) methods of
score calculation.

Below we briefly review Burge and Shawe-Taylor’s algorithm. It first estimates the
prototypes using the original Grabec’s algorithm (that is, = 1/t in the SDPU algorithm).
Unlike the SDPU algorithm, however, it doesn’t solve the linear equation (4) directly but

employs the following iteration method in order to update the prototypes.

qu('f;;HJ) = — T Z Z mkl (ts .

k#j l#m

where s denotes an index indicating the number of iteration, and Aq?) = B®_ We define

t_|_1) — (U§t+1), . t+1)

here a profile v of data y;11 by

(t+1) def exp(—|y+1 — qg('t)\) (j
L — @
j= 1 €xXp(—|yiq1 — q;)

11

where K is the number of prototypes. Note that v; >0 (j =1,---, K) and Zle vj = 1.
We then introduce two discounting parameters r1, 72 to define two K-discrete proba-

bility distributions S(t) $HL(t) by the following formula:

S(t) = (1—r)SEt—1)+rv®,

L(t) = (1 — Tg)L(t — 1) + T'QS(t).
Here we call S(t) the short term model and L(t) the long term model, respectively. We
initially set S;(0) = 1/K and L;(0) = 1/K. Note that S;(t) > 0 and L;(t) > 0 (j =
L---,K), x5, Si(t) =1 and X35, L(t) = 1.

Here we define a score of y;.1 by

S(¥is1) (\/s \/Lj(t))Q.

It appears difficult to give a clear information—theoretic/ statistical interpretation to

their score calculation based on the long/short term modeling. In contrast to Burge and
Shawe-Taylor’s algorithm, the kernel version of SmartSifter estimates prototypes using the
modified Grabec’s algorithm then, as seen in the next section, directly calculates a score
for a datum as a statistical difference between the models before and after learning the
kernel mixture from the datum, without using long/short term models. Hence SmartSifter

is much simpler and gives a clear statistical justification to a score.

2.4 Score Calculation

Below we give a method of calculating a score for a datum. Let p(x,y) be the joint
distribution obtained at time ¢, i.e., p®(x,y) = p® (x)p® (y|x).

Given an input (x4, y;) at time ¢, we define its Hellinger score by

SH(xt,y1) 22/(\/}9“ x,y) — /pED(Xy> dy,

where 7 is a discounting parameter where we set 7, = r. Intuitively, this score measures

how large the distribution p® has moved from p{*~1 after learning from (x;,y;).

We also define another score called the logarithmic loss as

St(xe,yt) = — logp(t_l)(xt) - logp(t_l)(Yt|Xt)-

12

From the viewpoint of information theory, the logarithmic loss can be thought of as the
codelength required to encode (x;,y;) under the assumption that a datum is generated
according to a probability density pt—1).

Letting dp(p®, pt=) € f(\/p D (y|x) — \/p(t—l)(y\x))2dy, the Hellinger score can be

expanded as follows.

Su(x,y1) = Ti2 (2 - 22\/p(t) (X)P(t_l)(x)/\/p(t)(y|X)p(t—1) (y\x)dy)
= 7‘% (2—22\/19(75)()(-|-Z\/p x)pt=1) (x)dp (p () (tl))).

Notice here that dj,(p®, p®=1)) for finite mixture models is not easy to calculate strictly.

We can use the following approximation formula under the condition that ||§ — 8'|| is

small.

/

(pL10)) ~ 3 (V=)+ 3 ol Bl).

i=1

where

dn(p(- |1 Zi), P+ 155 25)) 5
B / (\/p(ylui,z,-) - \/p(YIué,Eé)) dx

2(5 + Ty /2l e
AT
<exp [(1/2)(S5 i+ 5)T (S +) (S + 2)]

x exp [—(1/2) (" S s+ " S)]

=92 —

Consider the case where one deals with continuous variables only using a Gaussian
mixture model with k = 1, i.e., Wexp (—%(y —)"y - ,u)) Let the esti-
mates of 4 and ¥ from y** be 1 and ¢V, Then the logarithmic loss for x; is

calculated as

1 _ - _ _
5 (3 — WD) (S0 7y, —) 4 Tog(m) 2 5012

which coincides with the Mahalanobis distance between y, and p(*~! within a constant
multiple factor and an additional constant. In this sense the Mahalanobis distance can

be viewed as a special case of the logarithmic loss.

13

3 Experimental Results

In this section, we experimentally evaluate SmartSifter, the method by Burge and Shawe-
Taylor, and a program by Woodruff and Rocke [27]. The last one is an outlier detection

program based on Mahalanobis distance and S-estimation[22].

3.1 Simulation

We compared by simulation the parametric version of SmartSifter, the kernel variant of
SmartSifter, the method by Burge and Shawe-Taylor, and the program by Woodruff and
Rocke, which we abbreviate as SS, SS*, BS and WR, respectively.

We used pseudo random numbers to generate data sets containing a number of outlier

groups. We define a probability density for generating data by

p(y) = (1 —€)pa(y) + €po(¥y),

where € is a small positive fraction, p, is the probability density according to which
normal data are generated, and p, is the probability density according to which outlier
data are generated. We refer to the probability distribution defined by p, as a “bulk
distribution.” We assume that each datum is three-dimensional. In this experiment, we let

the probability density p, be a Gaussian mixture consisting of two Gaussian components:

Pu(y) = ca1ip(y|p, A1) + cop(y|pa, Ag),

where ¢; + ¢ = 1 and ¢y, co > 0. We let py be a Gaussian mixture consisting of three

Gaussian components:

Po(y) = csp(y|ps, As) + cap(y|pa, As) + csp(y|ps, As),

where c3 + ¢4 + ¢s = 1 and c3,¢4,¢5 > 0. In this experiment we set u; = (0,0,0),
Mo = (Oa7a 0)’
1.2 0 0 1 0 0
Ar=1 0 10 [, A,=1012 0 [,
0 01 0 0 1

14

us = (3.5,0,0), uy = (3.5,2,0), pus = (9,-3,0), A3 = Ay = A; = 0.2], ¢ = 0.003,
¢t = ¢y =1/2 and ¢3 = ¢4 = ¢5 = 1/3, where [is an identity matrix.

We added to each datum an attribute label, whose range is {positivel, positive2, positive3},
where positive; means the datum is generated by the ith component of p,. We let group:
denote the set of the data whose label is positivei. We did not use labels for score cal-
culation, but rather for evaluation. Figure 4 shows the locations of the outlier groups

relative to the bulk distribution over y;-y, space. Outliers in group3 are far from the

b }}'2
@ groupl
& »
0 eroup ¥
«
\ S 2 / ®roun3
Bulk distributions SraHp
(20 line)

Figure 4: Location of outliers

bulk distribution with respect to the Euclidean distance, hence are expected to be easily
detected by WR. On the other hand, those in group2 are located between the means of
the two Gaussian components, hence are expected to be difficult for WR to detect.

We generated ten data sets according to the above densities, where each data set
consists of 30,000 data, containing 90 = 30, 000 x 0.003 outliers in average.

We applied the four algorithms to all of the data sets. For SS, we set » = 0.001, &k = 2,
and o = 2.0, while for SS*, we set » = 0.001, K = 27, and ¢ = 1.2. We used Hellinger
score for SS and SS*, For BS, we set r; = 0.01 and 7, = 0.02. For WR, we set the number
of iterations to 40.

Figures 5, 6, 7, and 8 show averaged coverage for the four algorithms. Here coverage is

15

the ratio of the number of detected outliers to that of outliers in the extracted data, where
data were extracted in a descendent order of their scores. The horizontal axis represents
the ratio of the number of the extracted data to that of a whole data. These graphs show
coverage for each of the outlier groups and a whole set of outliers. For example, Figure
5 implies that SS was able to find 80% of outliers (72 outliers) approximately, in the top

10% of highest scored data.
100

80

60

Coverage (%)

40

20

0 /"’ 1 1 1 1
0 20 40 60 80 100

Extracted Data (%)

Figure 5: Coverage for SS

We observe from these graphs that SS outperformed other algorithms. Both SS and
WR could fairly successfully detect outliers in group3. SS was also able to successfully
detect outliers in group2, while SS* BS and WR were not, as expected.

We investigate how well SS and WR, work for the case in which the data distribution
is time-dependent. We prepared the model illustrated in Figure 10. In the beginning,
the model was the same as the stationary case. Then the second component of the bulk
distribution and the model of group3 outliers moved at a constant velocity, with their
shape and relative locations preserved. In the final stage, the second component of the
bulk distribution located at the position where the group3 outliers used to be in the
beginning. Figures 11 and 12 respectively show coverage for SS and WR.

We observe from Figures 11 and 12 that the coverage of group3 for WR in the non-

16

Coverage (%)

Coverage (%)

100 T T T

60

40

20 b

0 /—/’,,»"””RV 1 1 I 1
0 20 40 60 80

Extracted Data (%)

Figure 6: Coverage for SS*

100

100 T T T T

80

60

20

0 P ! I

0 20 40 60 80
Extracted Data (%)

Figure 7: Coverage for BS

17

100

Coverage (%)

Coverage (%)

100

80

D
o

IN
o

20

100

80

D
o

N
o

20

20 40 60
Extracted Data (%)

80 100

Figure 8: Coverage for WR

20 40 60
Extracted Data (%)

Figure 9: Coverage for the four

18

80 100

algorithms

Coverage (%)

y sroup2 |

S b

Bulk distributions
(20 line)

Figure 10: Location of outliers (time-dependent model)

100

80

D
o

N
o

20

0 20 40 60 80 100

Extracted Data (%)

Figure 11: Coverage for SS with time-dependent data

19

100 . — e

80

Coverage (%)

0 *’/ 1 1 1 1 P
0 20 40 60 80 100

Extracted Data (%)

Figure 12: Coverage for WR with time-dependent data
stationary case decreased in comparison with the stationary case, while that for SS didn’t
change at all. This fact demonstrates that SS’s function of discounting learning is signif-
icant in dealing with non-stationary sources
Table 1 shows the running time of all the algorithms. We may see that SS runs most
efficiently, specifically achieving 1/2000 computation time in comparison with WR for

30,000 dataset.

algorithm SS | SS*| BS | WR
time (second) | 3.74 | 750 | 2380 | 7760

Table 1: Running time for 30,000 data

3.2 Network Intrusion Detection

We applied SmartSifter to the dataset KDD Cup 1999 [26] prepared for network intrusion
detection. The purpose of the experiment was to detect as many intrusions as possible in
an on-line setting without making use of the labels. Although in KDD Cup 1999 the data
labels, each of which is concerned with if it is an intrusion or not, were used in training
for supervised intrusion detection, we used them only for the evaluation of SmartSifter.

Hence any supervised approach to the dataset is not fairly comparable with SmartSifter.

20

Each datum in KDD Cup 1999 is specified by 41 attributes (34 continuous and 7
categorical) and a label describing attack type (22 kinds: normal, back, buffer_overflow,
ftp_write, warezmaster, etc.) where all labels except “normal” indicate an attack. We
used four of the original 41 attributes (service, duration, src_bytes, dst_bytes) because
these four were thought of as the most basic attributes. Only ‘service’ is categorical. The
range of service is {http, smtp, finger, domain_u, auth, telnet, ftp, ecoi, ntp_u, ecri,
other,pop_3, pop-2, ftp_data, ssh, gopher, domain, private, login, imap4, time, shell, IRC,
urh.i, X11, urp., tftp_u, discard, tim i, red.i, nntp, uucp, netbios_ssn, daytime, echo}.
The number of service kinds is 41, and we classified them into {http, smtp, ftp, ftp_data,
others} because each categorical variable belonging to “others” has a low frequency. Since
the continuous attribute values were concentrated around 0, we transformed each value
into a value far from 0, by y = log(z + 0.1).

The original dataset contains 4,898,431 data, including 3,925,651 attacks (80.1%).
This rate of attacks is too large for statistical outlier detection. Therefore, we produced
a sub dataset SF consisting of 703,066 data, including 3,377 attacks (0.48%) by picking
up the data whose attribute logged_in is positive. Attacks that successfully logged_in are
called intrusions. Note that an outlier is not necessarily an intrusion. We investigate how
many intrusions are included in the outliers which we detect using SmartSifter.

We further produced from SF datasets SF10 by random sampling, which consists
of 70,000 data (approximately 10% of SF). We generated ten SF10s by making different
random samplings. The first 7,000 data were not scored but used only for training because
the model would not be well-trained in the early stages.

We generated ten SF10s by making different random samplings. For each of them, we
ran both parametric and kernel versions of SmartSifter where the former is denoted by SS
while the latter by SS*. The parameters of SS are set to r = 0.0002, r, = 0.0003, k& = 2,
and o = 2.0, while those of SS* are set to r = 0.0002, r;, = 0.0003, K = 10, and ¢ = 0.2.

Figure 13 shows the averaged coverage for SS and SS* where the Hellinger score was
used as a score. This graph shows that SS significantly outperformed SS*, as observed in
simulation.

Table 2 shows the number of intrusions SS(*) detected where the Hellinger score was

21

Coverage (%)

100

80

D
o

N
o

20

top # of intrusions included (coverage)
ratio | SS with SF | SS with SF10 | SS* with SF10
1% | 610 (18%) | 69.8 (21%) | 22.0 (6.6%)
3% | 2190 (64%) | 262 (79%) 53 (16%)
5% | 2816 (83%) | 270 (81%) 71 (21%)
10% | 3305 (98%) | 304 (91%) 102 (31%)
total 3373 332 (average) | 332 (average)

Table 2: Number of detected intrusions in SF10

20

40 60
Extracted Data (%)

80

Figure 13: Coverage for SS and SS* with SF10s

22

100

used as a score. Table 3 shows the CPU time for KDDCup data. SS is superior to
SS* both in accuracy and computation time. This implies that the SDEM algorithm
with a Gaussian mixture works better than the SDPU algorithm using a kernel mixture.
Remarkably, SS was able to detect 79% intrusions in the top 3% data of highest scores,

and 81% intrusions in the top 5% data of highest scores.
algorithm SS for SF | SS for SF10 | SS* for SF10
time (second) 222 23 849

Table 3: Running time for KDDCup data

Finally, we applied SS to the dataset SF, where we used the same attributes as used
for SF10. Figure 14 shows the coverage for SS. We observe that the coverage for a larger
dataset SF increases more rapidly as the extracted data size increases, than for a smaller

dataset SF10.

100 T T T T
SS ——

D
o
T
1

Coverage (%)

i
o
T
1

20 b

O 1 1 1 1
0 20 40 60 80 100

Extracted Data (%)

Figure 14: Coverage for SS with SF

3.3 Outliers in Medical Pathology Data

Australia’s Health Insurance Commission (HIC) administers the universal health insur-

ance scheme known as Medicare and a variety of other Government payment systems. An

23

important role performed by the HIC is that of preventing and detecting fraud and inap-
propriate servicing. The HIC is also moving towards a broader role in improving health
outcomes. The universal health insurance scheme has been in operation since 1975. The
transactional data for claimed medical expenses since 1975 forms a massive amount of
data available for analysis.

CSIRO Australia is working with the HIC on a project exploring the utilization of
pathology services. The project is exploring many aspects of the provision of pathology
services through approved pathology companies. The longer term aim of the project is
to identify variations in practices and provide insights that may lead to improvements
in health outcomes. The current initial phase of the project is exploring for interesting
and novel features within the data that will lead the way for a detailed study of health
outcomes.

The dataset used for this initial phase consists of over 32 million pathology transactions
(suitably de-identified to protect privacy) over a 2 year period. Associated with each
transaction is information about the type of pathology test being performed (there are
some 400 different types of transactionable pathology items), the rendering doctor, the
pathology company performing the tests, the doctor who requested the tests to be done,
and information relating to the type of doctor and patient (age, gender, location, etc.).

A straight-forward application of SmartSifter to the transactional data lead to the
identification of individual transactions that are unusual. However, transaction level data
is not particularly suited to the types of analyses performed in data mining. Instead, entity
oriented analyses were performed after suitably transforming the dataset in various ways.
SmartSifter was used to explore for unusual and rare patterns of behavior associated with
individual patients (nearly 4 million), individual doctors (approximately 20 thousand),
and pathology providers (approximately 150).

The types of transformations performed include aggregating relevant features of the
transactions, which is a laborious and iterative task of identifying different types of aggre-
gates and exploring whether they provide suitable results. SmartSifter was employed in
this iterative process as a tool supporting feature selection, giving insights into the cho-

sen collection of features. For this data pre-processing phase of the data mining project,

24

SmartSifter proved useful in identifying problems in the datasets. That is, initial applica-
tions of SmartSifter highlighted records in the datasets that contained errors. In general,
their distance scores were quite significantly larger than those of other records. These
errors were rectified and a cleaner dataset developed.

For illustrative purposes we demonstrate SmartSifter here to explore for pathology
providers (of which there are about 150 in the dataset) which stand out from the rest in
some sense. An aggregate dataset was derived from the source transactional dataset by
aggregating on the pathology provider. The aggregation constructed 7 variables for each
pathology provider, including percentage distributions over each of 5 pathology groups;
the number of different patients; etc. SmartSifter identified providers numbered 109, 126,

and 114, as having consistently high distance scores (Table 4) across two distance scores.

Pahol Hellinger Logarithmic
Prov | Rank Score | Rank Score
109 1 65.6 | 2 1.3
126 2 58.3 |1 1.3
114 3 57.5 | 3 0.6
112 4 35.5 4 -0.2
75 5 334 |5 -0.3
50 6 25.4 | 6 -0.8
79 7 25.0 |7 -1.2
123 8 23.7 |9 -1.3
129 9 23.3 | 11 -1.4
51 10 21.1 | 8 -1.3
104 11 21.0 13 -1.6

Table 4: Summary of rare cases for pathology providers

Empirically SS has pinpointed pathology providers as significant rare-cases. This out-
come can be confirmed from the sample of provider data listed in Table 5. Columns A to
E record the proportion of pathology tests performed by the provider in each of 5 differ-
ent categories. These categories are referred to as Chemical, Microbiology, Immunology,
Tissue Pathology, and Cytology. SS has identified, in this case, two pathology providers
specializing in Tissue Pathology (109 and 114) and another that does no Microbiology
nor Tissue Pathology (126). The “normal” situation, from this dataset, indicates that
pathology providers generally perform a spread of tests.

Of course, using such a small dataset does not exhibit the full power of SS in finding

25

Pov A B C D E F G |

107 0.64 0.23 0.03 0.08 0.03 0.27 0.02
108 065 0.20 0.10 0.05 0.01 037 0.03
109 O 0 0 1 0 1 0.43
110 0 0.00 0 0.57 043 0.89 0.10
111 0.30 0.13 0.02 0.06 0.50 0.32 0.01
112 0 0 0 0 1 0.83 043
113 034 0.14 0.02 0.02 047 038 0.02
114 O 0 0 1 0 0.96 0.30
115 036 009 0 0 0.55 045 045
116 041 0.06 0.05 0.01 047 047 0.32
117 029 0.12 0 0 0.58 039 0.35
118 0.52 0.06 0.02 0 039 041 0.34
119 0 0 0 0.5 0.5 0.5 0.5
120 034 0.14 0.03 0.02 046 0.34 0.02
125 0.55 0.23 0.02 0.17 0.03 0.56 0.07
126 0.33 O 033 0 033 1 1
127 033 0.18 0.02 0.01 046 0.34 0.01
128 0.29 0.14 0.02 0.02 052 039 0.03

Table 5: Sample of pathology provider data. Column names and actual provide numbers
have been de-identified.

rare cases. Indeed, manually reviewing all 150 records in the pathology provider dataset
is a feasible task and would identify the same observations made by SS. Yet this simple
example confirms SmartSifter’s ability to identify patterns in the data that a human
expert finds interesting. The ongoing application of SmartSifter to the 20,000 doctor
dataset and the 4,000,000 patient dataset is providing similar insights into the data. Rare
cases are being efficiently highlighted and the HIC have identified situations where this
will have impact.

This project with the Health Insurance Commission is still in progress and is employing
a wide variety of techniques drawn from data mining and statistics in general. The use
of SmartSifter has provided and continues to provide useful insights into the data. Many
significant observations have been highlighted by SmartSifter, identifying candidates for

further investigation.

4 Conclusion

This paper has proposed SmartSifter as a program for on-line unsupervised outlier detec-

tion. We gave a statistical theory for SmartSifter and demonstrated its effectiveness in

26

terms of accuracy and computation time through the experiments using: simulated data;
network intrusion detection data from the 1999 KDD Cup; and rare event detection for the
health insurance pathology data provided by Australian Health Insurance Commission.
Through SmartSifter we offer a general framework for on-line unsupervised outlier
detection, which is expected to be further applied to a variety of data mining tasks other
than fraud-detection, such as event detection [11], topic detection [1], etc.
The following technical issues remain open for future investigation:
1) Choosing the optimal number of components in the mixture models; 2) automatic
clustering of categorical attributes; 3) extending SmartSifter using time series modeling;

and 4) exploration of the robustneSmartSifter of the algorithm to parameter tuning.

References

[1] J. Allan, J. Carbonell, G. Doddington, J. Yamron, and Y. Yang, Topic detection
and tracking pilot study: Final report, in Proc. of the DARPA Broadcast News
Transcription and Understanding Workshop, pp:194-218, 1998.

[2] V. Barnett and T. Lewis, Qutliers in Statistical Data, John Wiley & Sons, 1994.

[3] F. Bonchi, F. Giannotti, G. Mainetto, and D. Pedeschi, A classification-based
methodology for planning audit strategies in fraud detection, in Proc. of KDD-99,
pp:175-184, 1999.

[4] P. Burge and J. Shawe-Taylor, Detecting cellular fraud using adaptive prototypes, in
Proc. of AI Approaches to Fraud Detection and Risk Management, pp:9-13, 1997.

[6] P. Chan and S. Stolfo, Toward scalable learning with non-uniform class and cost-
distributions: A case study in credit card fraud detection, in Proc. of KDD-98,
AAAI-Press, pp:164-168 (1998).

[6] T. Cover and J. A. Thomas, Elements of Information Theory, Wiley-International,
1991.

[7] A.P. Dempster, N. M. Laird, and D. B. Ribin, Maximum likelihood from incomplete
data via the EM algorithm, Journal of the Royal Statistical Society, B, 39(1), pp:1-38,
1977.

[8] T. Fawcett and F. Provost, Combining data mining and machine learning for effective
fraud detection, in Proc. of AI Approaches to Fraud Detection and Risk Management,
pp:14-19, 1997.

27

[9] T. Fawcett and F. Provost, Activity monitoring: noticing interesting changes in
behavior, in Proc. of KDD-99, pp:53—62, 1999.

[10] I. Grabec, Self-organization of Neurons described by the maximum-entropy principle,
Biological Cybernetics, vol. 63, pp:403—409, 1990.

[11] V. Guralnik and J. Srivastava, Event detection from time series data, in Proc. KDD-
99, pp:33—42, 1999.

[12] D. M. Hawkins, Identification of Outliers. Chapman and Hall, London, 1980.

[13] E. M. Knorr and R. T. Ng, Algorithms for mining distance-based outliers in large
datasets, in Proc. of the 24th VLDB Conference, pp:392—-403, 1998.

[14] E. M. Knorr and R. T. Ng, Finding intensional knowledge of distance-based outliers,
in Proc. of the 25th VLDB Conference, pp:211-222, 1999.

[15] R. E. Krichevskii and V. K. Trofimov, The performance of universal coding, IEEE
Trans. Inform. Theory, IT-27:2, pp:199-207, 1981.

[16] T. Lane and C. Brodley, Approaches to on-line learning and concept drift for user
identification in computer security, in Proc. of KDD-98, AAAI Press, pp:66-72, 1998.

[17] W. Lee, S. J. Stolfo, and K. W. Mok, Mining audit data to build intrusion detection
models, in Proc. of KDD-98, 1998.

[18] W. Lee, S. J. Stolfo, and K. W. Mok, Mining in a data-flow environment: experience
in network intrusion detection, in Proc. of KDD-99, pp:114-124, 1999.

[19] G. McLachlan and D. Peel: Finite Mizture Models, Wiley Series in Probability and
Statistics, John Wiley and Sons, (2000).

[20] Y. Moreau and J. Vandewalle, Detection of mobile phone fraud using supervised
neural networks: a first prototype, Available via:
ftp://ftp.esat.kuleuven.ac.jp/pub/SISTA /moreau/reports/icann97_TR97-44.ps.

[21] R. M. Neal and G. E. Hinton, A view of the EM algorithm that justifies incremental,
sparse, and other variants,
ftp://ftp.cs.toronto.edu/pub/radford /www/publications.html, 1993.

[22] D. M. Rocke, Robustness properties of S-estimators of multivariate location and
shape in high dimension, the Annals of Statistics, Vol. 24, No. 3, pp. 1327-1345,
1996.

[23] S. Rosset, U. Murad, E. Neumann, Y. Idan, and G. Pinkas, Discovery of fraud rules
for telecommunications-challenges and solutions, in Proc. of KDD-99, pp:409-413,
1999.

28

[24] G. J. Williams and Z. Huang, Mining the Knowledge Mine: The Hot Spots Method-
ology for Mining Large Real World Databases, in Advanced Topics in Artificial In-
telligence Lecture Notes in Artificial Intelligence, Volume 1342, pp:340-348 Springer-
Verlag, 1997.

[25] K. Yamanishi, J. Takeuchi, G. Williams, and P. Milne, On-line unsupervised out-
lier detection using finite mixtures with discounting learning algorithms, in Proc. of
KDD2000, ACM Press, pp:250-254, 2000.

[26] http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
[27] http://lib.stat.cmu.edu/jasasoftware/
(28] http://www.hnc.com

29

