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Abstract

Decisions are central to our daily existence. Every activity requires us to make
decisions, many subconsciously. Knowledge, defined as an acquaintance with
facts, truths, or principles (Delbridge, 1982), is the key to correct decision mak-
ing. Its representation and use by machine has been a major goal throughout
the history of computing machinery. Research in the discipline of Artificial
Intelligence (AI) explicitly investigates ways in which knowledge can be eflec-
tively represented and employed by computers in order to make intelligent and
human-appreciable decisions. Knowledge-based expert systems (KBESs) are
a family of successful, practical systems arising from Al research. These sys-
tems structure knowledge (as decision structures) in such a way that it can
be efficiently employed to make decisions, and yet is easily understandable by

humans.

Significant research problems relating to KBESs remain. One such prob-
lem area falls under the general categories of machine learning and knowledge
acquisition. It is generally agreed that learning is one of the most important
components of intelligence. The research reported here focuses upon the acqui-

sition of decision structures for use by KBESs.

This thesis takes a well-established, practical tool for knowledge acquisition
as its basis. Experiments are described, pinpointing some of the limitations
of the tool. A new approach is then developed which builds upon this tool,

introducing the idea of combining decision structures.
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| Introduction

This thesis 1s about learning. To learn is to acquire knowledge, or to gain
skills, by study, instruction, or experience (Delbridge, 1982). Knowledge can
be defined as an acquaintance with facts, truths, or principles, and thus to
learn is to become ever more familiar with these facts, truths, or principles.
In addition to this, the skill of applying knowledge appropriately must also
improve. A system which can improve its performance at a given task over time
is a system that can learn (Forsyth and Rada, 1986). Improvement is generally
effected, at least in the context of computing machinery, by modifying (by, for
example, adding to) some store of knowledge. Whilst there exists philosophical
debate over the necessity for there to be performance improvement (Gaines
and Boose, 1988b, Section 3.2), such a definition captures the intent of most
computer-based learning systems and will suffice here. Performance, in the
context of knowledge-based expert systems, is usually defined as the making of

accurate decisions in an efficient manner (Langley, 1989).

In this thesis learning is considered in the context of knowledge-based ex-
pert systems. This chapter begins with a discussion of what “knowledge” means
in the context of the work presented here. With this foundation, the chapter
introduces knowledge-based expert systems, discussing their deficiencies, fo-
cusing upon those deficiencies addressed in this thesis. A general overview of

knowledge acquisition and machine learning follows.
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1.1 KNOWLEDGE

Knowledge, unquestionably, is a difficult concept to define, or even describe.
Knowledge can be “a collection of specialized facts, procedures, and judgment
rules” (Turban, 1990) or the “information available to the individual from in-
ternal or external sources about relationships and rules that describe organised
human activities” (Hertz, 1990). For the purposes of this thesis four types
of knowledge are identified: Terminological Knowledge, Inferential Knowledge,

Situational Knowledge, and Meta-Knowledge.

Terminological knowledge is basic definitional knowledge. It includes
the nouns, or as is popular today, the objects, of the language. It includes the
verbs of the language, describing how actions are performed upon or by objects.
It includes all the words of the language, and their meanings, and is the type
of knowledge found in a dictionary. Such knowledge provides the blocks upon

which to build the other types of knowledge.

Inferential knowledge describes relationships between objects. A rela-
tionship may be causal, or it might be one of similarity, or it might describe
some set (as in super set or subset) relationship. Such knowledge is often of a
general nature, expressed in terms of classes of objects rather than in terms of
particular objects. Inferential knowledge also covers the rules of behaviour (of-
ten called heuristics), as well as the knowledge which encompasses a description

of processes.

The knowledge which experts employ to solve problems is usually regarded
as inferential in nature. Such knowledge is classified further by Klein and Meth-
lie (1990, page 30) into theoretical knowledge (the known facts of the domain)
and experimental knowledge (the ill-defined domain knowledge, usually referred
to as heuristic knowledge or rules-of-thumb). Heuristic knowledge is that knowl-

edge gained by an apprentice working closely with a Master.

Situational knowledge records information about particular instances of

objects. This is the type of knowledge that is found in database systems. It
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is dormant, rather than active knowledge. (Inferential knowledge, on the other

hand, can be thought of as being active knowledge.)

Meta-knowledge is that which guides the deployment of other forms of
knowledge. John McDermott describes this as the knowledge of “how to bring
relevant knowledge to bear at the right time” (Mostow, 1985). Meta-knowledge

is the knowledge which allows us to reason.

The endeavour of Artificial Intelligence research is the study of knowledge—
in particular, its representation and use. Artificial Intelligence is often charac-
terised as automated problem solving. Problem solving is the task of bring-
ing the appropriate inferential knowledge, under the guidance of some meta-

knowledge, to bear upon the appropriate situational knowledge.
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1.2 KNOWLEDGE-BASED EXPERT SYSTEMS

A system is an interrelated collection of parts. In an expert system, these parts
interrelate in such a way so as to bring knowledge to bear on a problem to
provide a solution. There are many parts to expertise: learning; reasoning at
different levels of abstraction; having different perspectives of the same problem;
knowing when to break the rules; explaining the reasoning. No computer-based
system has yet achieved such an integration of all parts. There are no truly
expert computer-based systems. However, there is a class of practical, and

indeed commercially successful, systems known as expert systems.

Such expert systems can be characterised as systems which contain a store
of mainly inferential-type knowledge (the knowledge base or decision struc-
tures), using some inferencing mechanism (the performance element) in the
context of some situational knowledge to make decisions. In other words, an ex-
pert system makes decisions based upon its store of knowledge operating upon
a set of facts. Of central importance is the store of knowledge. A primary
characteristic of expert systems is that this store of knowledge is separate from

the mechanisms which are employed to use it.

An expert system, in the broadest sense, is any system which attempts
to perform some task at the level of a human expert. While computers have
traditionally excelled in performing numerically-oriented tasks, symbolically-
oriented tasks, as performed by human experts, are now a primary area of
attention. Such tasks involve the manipulation of symbols (rather than num-
bers) to obtain results. Symbols represent objects and concepts, and a result
is a symbolic expression of the state of the objects. Expert systems manipu-
late symbols under the guidance of a symbolic knowledge-base which stores the

truths and principles of some domain.

A knowledge-based expert system is a computer program in which a
performance element operates upon a knowledge-base to make intelligent de-

cisions within the confines of a given situation. A situation can be supplied
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interactively by the users of such a system, whilst the system itself identifies
the information it needs. The users may ask the system to justify requests made

upon them, or even to demonstrate how the conclusions were reached.

A performance element is that part of a system involved in determin-
ing new facts or beliefs from previous knowledge. “Performance element” and

“inference engine” are synonyms.

A knowledge-based expert system can be characterised by its knowledge-
base structure, the mechanism it employs to make deductions, and its user
feedback capabilities. The knowledge-base contains inferential knowledge en-
capsulating the “principles” of the domain. It is often represented in the form
of rules and may be structured to model the domain. A simple, uniform repre-
sentation of the knowledge is considered advantageous. Many systems provide
a mechanism for representing uncertain or fuzzy information. The performance
elements employ a variety of techniques for using the knowledge, with the so-
called backward and forward chaining approaches being common.

There are numerous deficiencies with such systems, and the last decade
has been witness to an explosion in research directed towards these problems.
Deficiencies include the narrow domain of expertise of the systems, leading to
the potential for incorrect behaviour in slightly different domains; the difficulty
in representing certain types of knowledge; the slow and laborious task of con-

structing such systems; and their often inadequate explanation capabilities.

1.2.1 A Characterisation

Many different types of systems have been developed, and even post facto la-
belled, as expert systems. The use of the term “expert system” in this thesis is
restricted to those systems characterised by the classic expert systems and their
descendants. Systems such as DENDRAL (Lindsay et al., 1980), CASNET (Weiss
et al., 1978), MYCIN (Shortliffe, 1976), and PROSPECTOR (Duda, Gaschnig,

and Hart, 1979) are widely recognised as exemplar of the first generation of
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expert systems. The common characteristics of these systems are summarised
below.

Type of Knowledge: Expert systems attempt to capture heuristic knowl-
edge. Such knowledge is usually represented by expert systems in a declarative,
rather than procedural, manner. Newell and Simon (1972) have observed that
when the expert is forced to put his/her knowledge into words, it is often ex-
pressed in terms of a situation implying a particular action to be taken. Thus,

many expert systems encapsulate this heuristic knowledge as if-then rules.

Uniform Encoding of Knowledge: Whichever representation is chosen,
it is often the case that the knowledge in the system is uniformly encoded
as many separate units. This has allowed simple, yet powerful tools to be

developed for managing all aspects of the knowledge.

Uncertainty in the Knowledge: Domain knowledge is often expressed
in terms of uncertainties. This may be expressed by the domain expert as “If
we are confident that x, y and z are true, then there is some evidence for belief
in w”. Various methods for handling such information have been developed

(O’Neill (1986) provides an excellent review).

Structure of an Expert System: Moving away from the knowledge itself,
expert systems are structured so that the performance element is generally
a separate entity to the knowledge base. This, in theory, allows a domain-
independent performance element to be developed, and then applied to any

suitable knowledge base, adding to the flexibility of the system.

Explanation: A very important feature of expert systems is their explana-
tory ability. It is important to be able to justify why a particular answer is given.
The lines of reasoning that lead to the answer, when made available, can give

the user confidence in the answer.

1.2.2 Deficiencies

A large number of expert systems exist today, many of which are in daily

commercial use (Michie, 1987). Whilst expert systems have been successful,



§1.2 Introduction 7

there is still room for improvement. The deficiencies of expert systems dis-
cussed below represents an amalgam of my own and other researchers’ analyses
(Williams, 1986).

Declarative Representation: Some time ago Clancey pointed to one
of the weaknesses of rule-based systems when he said that rules “can only be
read and understood by knowing the specific procedure that will be interpret-
ing them” (Clancey, 1985). Much progress has been made toward the goal of
separating the knowledge base from the performance element, but difficulties

remaln.

Domain of Expertise: A general and long standing criticism of expert
systems is that they have too narrow a domain of expertise (Buchanan, 1982).
What makes this worse though 1s that they are unable to recognise problems
for which their own knowledge is inapplicable or insufficient (Hart, 1980).

The former is a problem of expectations. Expert systems typically have
expertise in only one specific (often very narrow) domain. By developing small,
specific systems, we can build a base from which a foundation can be laid, upon
which the machinery required to build more general systems can be developed.
Enlarging the domain of expertise often requires extending the knowledge base
in use, introducing other problems. The CYC project (Lenat and Guha, 1989)
is an example of a very ambitious development which attempts to encode large

amounts of knowledge addressing such problems.

The problem of inappropriate application is a limitation that may be over-
come with the focus on meta-knowledge. Already systems have been developed
which are able to reason about their own knowledge bases, providing them with
the ability to “kmow what they know”. However, there is still much to be done.

Researchers recognised early the importance of this (Buchanan, 1982).

Knowledge Representation: A most important aspect of expert sys-
tems which has had much attention is knowledge representation. The knowl-

edge representation scheme employed by a system will influence such things as
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the techniques employed for acquiring knowledge, the type of reasoning to be
employed, and the type and complexity of explanations that the system can
provide. A large number of problems can be classed as knowledge representa-
tion problems. These often derive from restrictions enforced by the language
for expressing facts and relations and from the degree to which different types

of knowledge are hidden.

Uniformity of representation allows relatively simple mechanisms to be em-
ployed to maintain large knowledge bases. If-then rules have the further advan-
tage that they can be executed as procedural code and yet viewed as declar-
ative expressions (Davis and King, 1984). However, any uniform scheme, it
seemns, inherently excludes some forms of knowledge from being naturally rep-
resented. Developers have often complained of their inability to represent such
things as spatial relationships, time relationships, causality, and physical prin-
ciples within a restricted representation scheme (Mackenzie, 1984; Weiss and
Kulikowski, 1984). Within the rule-based paradigm, for example, simple algo-

rithms have often been massaged into the if-then structure.

Aside from not being able to represent many things, it is often the case
that too much is represented only implicitly. This has been a very common
observation, and has significance to many other areas, including explanation
and knowledge acquisition. Aikins (1983) provides examples of this hidden
knowledge for production systems. Both Clancey (1983) and Mackenzie (1984)

have made similar observations.

Several types of knowledge are often represented only implicitly. The con-
text in which a rule is applicable can be implicit—often, some of the condi-
tions of a rule test for applicability in the current context while the remaining
conditions represent the expertise. The former often represent a type of meta-
knowledge (or control knowledge). Control knowledge is also often embedded
implicitly in the ordering of the conditions and the importance of the particular
ordering is not explicit. The purpose of a rule is also often implicit. Some rules

are “control rules”, others are “summary rules”, etc.
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Knowledge Acquisition: Related to the knowledge representation prob-
lem is the knowledge acquisition problem. Knowledge acquisition is the process
whereby a knowledge engineer extracts information from an expert in a par-
ticular domain (the domain expert). The knowledge engineer converts this
information into a form suitable for use by the expert system. Test cases can
then be used to exercise the acquired knowledge, and deficiencies (errors) can

be referred back to the domain expert.

This form of knowledge acquisition requires considerable work on the part of
those involved—the knowledge engineer and the domain expert. It was an early
observation that “knowledge acquisition is ... the most limiting ‘bottleneck’ in
the development of modern knowledge-intensive artificial intelligence systems”
(Michalski, Carbonell, and Mitchell, 1983). There is a need to automate this
task, and much research has focused on this area (Gaines and Boose, 1988a;

Gaines and Boose, 1988b).

Weiss and Kulikowski (1984) refer to the closely related problem of adding
new types of knowledge to the systems. This requires the ability to dynam-
ically enhance the representation scheme, since full requirements may not be
known beforehand, and different types of knowledge may be needed in solving

a problem.

Explanation: An important reason for having an explanation facility is
that the user must feel able to ask the system why any conclusion was reached,
with adequate reasons being given. An explanation will not be required for each
conclusion but provides important feedback during the knowledge acquisition

phase.

The first generation systems have very basic, and often inadequate, expla-
nation facilities. Buchanan (1982) noted the stylized explanations of a line of
reasoning of many systems, whilst Hart (1980) noted that the explication of the

reasoning processes are frequently silent on fundamental issues.
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The problems with explanations often derive from problems with knowledge
representation, many of which have been mentioned above, like the implicit
embedding of control knowledge in rules. Mackenzie (1984) identified the need
to be able to use contexts and typical situations to explain why certain rules

are applicable, which has often been hidden in the rules.

Bramer (1982) also commented upon the problem with explanations when
the knowledge base becomes very large. Although each item in the knowledge
base may be comprehensible in itself, the overall operation of the system be-
comes incomprehensible. Expert systems must be able to group items of knowl-
edge together at a suitable level of abstraction to be able to give comprehensible

explanations.
Summary

Knowledge (and its representation, acquisition, and use), as the heart of
intelligent behaviour, is of utmost importance to the development of intelligent

systems. This thesis explores the process of automatically acquiring knowledge.
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1.3 LEARNING

Historically, software systems have dealt with a fixed task, or at least with a
fixed task environment (Lenat, Hayes-Roth, and Klahr, 1983). Many problems
associated with expert systems, but certainly not confined to such systems,
stem from this fact. Interest in systems which dynamically adapt themselves to
change in their environment—systems that learn—has steadily grown over the

past few years.

Computer-based learning algorithms address two of the most important
aspects of knowledge-based expert systems—the acquisition of knowledge and
the improvement in performance over time. Two corresponding and overlapping

fields of research have emerged within the computer-based learning area.

Knowledge Acquisition is a generic name given to the task of building
the various knowledge structures to be used in expert systems. Such an activity
typically involves a domain expert. Classically, a knowledge engineer interviews
the domain expert and translates the expert’s knowledge into a form suitable
for representation and use by computer. Knowledge acquisition systems assist
this knowledge elicitation process, and the term covers the general development

of tools and practices which can be employed by knowledge engineers.

Machine Learning covers research into techniques for automatically gen-
erating and improving knowledge bases. There are four broad categories of
machine learning: inductive learning, analytic learning, genetic algorithms, and
connectionist learning algorithms. This thesis deals with inductive learning

where the system learns from a collection of examples presented to it.

Knowledge Acquisition and Machine Learning systems can be characterised
by the type of knowledge they acquire. Many knowledge acquisition systems
target the acquisition of terminological knowledge. Other systems focus on
inferential knowledge, whilst some acquire control knowledge. The majority of

machine learning systems attempt to learn inferential knowledge.
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The usefulness of automating the task of acquiring knowledge was demon-
strated by Michalski and Chilausky (1980) in an experimental comparison of
manual and automated knowledge elicitation. They found that decisions made
by decision structures generated by a learning system were more accurate than
those made by the manually elicited decision structures. It was noted that the
automatically derived decision structures “were viewed generally quite favorably

by experts—with a few exceptions”.

1.3.1 Knowledge Acquisition

Knowledge acquisition, knowledge extraction, and knowledge elicitation, are
terms that have been used to denote the process of obtaining and formulating
knowledge derived from experts. The activity of acquiring knowledge is often
referred to as knowledge engineering (Klein and Methlie, 1990), or at least as a

key component of the knowledge engineering process (Turban, 1990).

The classical paper on knowledge acquisition (Buchanan et al., 1983) iden-
tifies the five stages: identification, conceptualisation, formalisation, implemen-
tation, and testing. Identification involves understanding and characterising
the problem domain. Conceptualisation explicitly identifies the concepts of the
domain, pinpointing the objects of relevance, and the relations amongst them.
A formalised structure is then put in place, organising the concepts so as to
bridge the gap between the structure of the particular domain, and structures
suitable for use in knowledge-based expert systems. A prototype system can

then be implemented and refined by testing.

There is a literature dealing with manual methods of knowledge acquisi-
tion. Turban (1990, chapter 13) provides a review of such techniques. Many
techniques borrow heavily from psychology and include structured interview,
protocol analysis, observations of experts, questionnaires, and analysis of doc-

umented knowledge.

Tools have also been developed to assist the knowledge engineer in the

rather labourious task of knowledge acquisition (Gaines and Boose, 1988a).
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These range from sophisticated editors designed for the manipulation of knowl-
edge bases (Abrett and Burstein, 1988; Musen et al., 1988) to dialogue man-
agers which can themselves conduct interviews with the expert (Kitto and

Boose, 1988).

Another class of knowledge acquisition systems covers those which construct
a prototype knowledge base from a database of example cases. Such systems
include decision tree induction and rule induction systems which take, as their
input, examples of decisions made by an expert. From these specific instances,
general decision structures are induced which reflect the general pattern of de-

cision making embodied in the examples.

Such inductive systems do not eliminate the need for an expert nor for a
knowledge engineer. An expert is often required to provide example decisions,
and to identify a maximal set of possible attributes that need to be considered
in arriving at any decision. The induced decision structures are then only the
first step in developing the knowledge-based expert system, typically requiring

much refinement.

1.3.2 Machine Learning

The boundary between those systems which fall into the Machine Learning cat-
egory and those which fall into the Knowledge Acquisition category is fuzzy. In
general, machine learning takes the process of automating knowledge acquisi-
tion much further. A machine learning system is one which requires minimal,

or at best no, direct human assistance.

A strong motivation for machine learning within the context of building
knowledge-based systems is the existence of large databases containing informa-
tion which is used statically (retrieved and updated). Machine learning systems
may be viewed as tools which are capable of turning this mass of information
into usable knowledge. Many machine learning (and knowledge acquisition)
systems do this by summarising the information contained in the database in

the form of rules or other knowledge structures.
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Inductive learning, of which similarity-based learning is a prime example,
begins with a so called training set of examples and builds a generalised descrip-
tion of those examples. Divide and conquer is a common approach. Examples
in the training set are usually described in terms of a number of attributes.
Given an initial training set, a partition based upon a particular attribute is
sought. For each cell of a partition, another attribute is sought to further par-
tition it. This recursive process continues until all examples in a partition are,
in some sense, homogeneous. This process describes a tree-like structure, with
the internal nodes representing particular attributes, and the links representing
the various values that the attribute may attain. The leaf nodes of the tree

correspond to decisions.
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1.4 MIL: MULTIPLE INDUCTION LEARNING

This thesis deals with the problem of inducing decision structures from examples
of decisions. The inductive learning approach, exemplified by the ID3 decision
tree induction algorithm (Quinlan, 1986a), provides a basis for this work. De-
cision tree induction has proved popular as a knowledge acquisition tool. This
can be attributed to the simplicity of the divide and conquer technique it em-
ploys, and to the numerous successful expert systems which employ knowledge
generated using such decision tree induction algorithms (Michie, 1987). Below
is summarised the genesis of the MIL algorithm, developing upon the decision

tree induction approach.

A study of the application of a decision tree induction algorithm to an
agricultural domain was undertaken. The induction algorithm’s task was to
develop a knowledge base which could be used to predict the viability of grazing
cattle in the arid regions of Australia. A series of experiments then considered
various aspects of the decision tree induction algorithm, including the choice of

attributes and pruning.

A second domain of application was also considered. Experiments were
carried out in building decision trees for determining the credit-worthiness of
an applicant for a loan. This domain proved to be an interesting complement to

the agricultural domain, providing further support for many of the observations.

One of the important observations made from these experiments was that
the decision tree induction algorithm was often unable to distinguish between
possible choices of partitions at each stage. Implementations of these algorithms
have often assumed an implicit ordering on the attributes, and use this ordering
when ties occur. Unexpected changes in the resulting decision trees resulted

from simply reordering the attribute definitions.

The induction algorithm’s inability to always choose between attributes was

taken advantage of by allowing multiple decision trees to be induced. These
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decision trees can then be merged to produce a single decision structure, in the
form of a set of rules.

By building multiple decision trees another problem of many decision tree
induction algorithms is redressed. Decision trees require a particular perfor-
mance element which checks particular attributes and follows the branch as-
sociated with its value. The performance element must check the attribute
which appears as the root of the tree for every example presented to it. Thus
a value must always be known for the root attribute. (The same is true of sets
of rules derived directly from a decision tree.) Multiple decision trees, with the

possibility of different root nodes, may avoid this problem.

The MIL algorithm resolves and removes any conflicts which arise when
two rule sets are combined. It is a tool to be used by the knowledge engineer
to provide an initial (or suggested) implementation of the decision structures
to be used in an expert system. The conflicts identified by MIL may provide
important information to the knowledge engineer, in identifying limitations of
the decision structures which have been induced. This system can thus be used

as an aild in the knowledge acquisition process.

The problem of combining induced decision trees is a simpler version of
the knowledge-base maintenance problem. In particular, one of the tasks of
knowledge-base maintenance is the incorporation of new knowledge into an ex-
isting knowledge base. The maintenance task must ensure that the knowledge-
base remains consistent and conflict-free. This thesis introduces an exploration

into this more general case of combining arbitrary sets of rules.
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1.5 OVERVIEW OF THE THESIS

This chapter has provided the general context of my research, clarifying, for the
purposes of this thesis, the concepts of knowledge, expert systems, and machine

learning.

Chapter 2 is an introduction to decision tree induction. A general decision
tree induction algorithm is presented, together with particular implementations

of this algorithm.

Chapter 3 demonstrates the application of a decision tree induction algo-
rithm to actual learning tasks. Data from a geographic domain and from a
financial domain are used in a series of experiments carried out to confirm a

number of properties of the decision tree induction algorithm.

Chapter 4 introduces the MIL algorithm, developed as an approach to han-
dling the multiple decision trees produced by a decision tree induction algo-
rithm. The primary task of MIL is to identify conflicting rules, and to resolve
these conflicts, whilst attempting to maintain the accuracy and coverage of the
knowledge base. A series of experiments in Chapter 4 confirm the effectiveness

of this approach.

Chapter 5 discusses alternatives that have either been implemented or con-
sidered during the development of the MIL algorithm. Suggestions for future

directions are included there.

Chapter 6 summarises the primary results and conclusions of the research

described in this thesis.

Appendix A lists the reference material for the thesis, forming an extensive

bibliography of the decision tree induction literature.

Appendix B lists my publications each of which has played a role in the

development of the work described in this thesis.



Decision Tree
5 Induction

Inductive learning systems build decision structures from examples, summaris-
ing relationships between the attributes of the examples. Systems which gener-
ate such structures for use in decision making require that these examples have
decisions (or classifications) associated with them. The family of decision-tree
induction algorithms reviewed here accept examples described in terms of a fi-
nite, predetermined set of attributes and build decision structures based upon

simple attribute-value tests.

Databases suitable for providing the training examples for inductive learn-
ing systems are readily available. Financial institutions, for example, maintain
databases of customer records which document the history of successful and
unsuccessful applications for credit. Universities maintain records of student
progress, along with other background information, in addition to a final de-
cision about each student (indicating whether they obtained a degree). And
databases containing information about land use are regularly utilised by land
use planners. It is the widespread existence of such data that makes learning

from examples an attractive proposition: static data can be brought to life.

Such data can be analysed in a variety of ways, from manually scanning for
patterns, through to the use of analytical tools such as discriminant analysis,
and on to inductive generalisation. These techniques vary in the amount of
human effort or intervention required. Studies have found though that decision
making systems using knowledge-bases produced by inductive learning algo-

rithms can outperform both discriminant models and human decision making

(Messier Jr. and Hansen, 1988).

Decision tree induction systems share a common divide and conquer ap-
proach entailing the application of a recursive algorithm to ever smaller sets of

training examples. The goal is to search for a decision tree which accurately

Page 18
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and efficiently reflects the decisions recorded for the training examples, and is
general enough to be used to make accurate decisions for unseen objects. Some
of the algorithms post process decision trees into collections of rules (a form

more familiar to the expert systems developer), and carry out pruning.

This chapter reviews the decision tree induction family of systems. Of
particular interest is the ID3 algorithm and its successors, which have been

found to be useful tools for knowledge engineering.
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2.1 THE TERMINOLOGY

Decision tree induction falls into the category of machine learning variously
referred to as inductive learning, empirical learning, similarity-based learning,
concept learning, and learning from examples. The terminology of decision tree

induction is introduced below.

An object is a description of an entity and, in particular, of an example.
The description consists of a list of the features of the example, represented as
an attribute-value list. Such a list is effectively a conjunctive description of the

example. An illustration of an object is:

Region 19481: Soil 1s of type CC1,

Distance to nearest seaport is 836 km,

Average weekly winter moisture index is 21%.

This object can be interpreted as representing a geographical region identified

as region 19481 and characterised by the specified attribute-value pairs.

An attribute describes some feature of an object. An attribute may take
on any number of values from the domain of the attribute. In the systems
described here attributes are single valued. For the object illustrated above,
the attributes are the soil type, the distance to the nearest seaport, and the
average weekly winter moisture index. A categorical attribute is one which
has a finite, unordered, set as its domain. An integer attribute is one whose
domain is the set of integers. The soil type in the above example is a categorical
attribute, while the distance to the seaport and the moisture index are consid-
ered to be integer attributes. Real attributes, with their domain consisting of
real numbers, will not be considered specifically here—results for integer-valued

attributes in general also hold for real-valued attributes.

A decision attribute is a distinguished attribute associated with each
object which identifies the decision class of that object. A decision class simply

organises all objects with a common value for the decision attribute into a
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single set. Such attributes are usually categorical attributes (in decision tree
induction systems). For example, we can associate with the above object a
decision attribute called the grazing viability. The values recorded for this

attribute indicate the viability for grazing cattle in the particular region.

A training set, denoted as Tr, is a collection of examples (objects) with
known values for the decision attribute. These decision values may be empir-
ically derived or provided by a domain expert. A training set is used by the

decision tree induction system to build generalised decision structures.

A decision tree is a tree structure consisting of nodes connected by di-
rectional branches. A decision tree will be denoted by 7. The root node of
a decision tree is the unique node with branches emanating from it but with
no branches pointing to it, and is pictured as the top node of the tree. A leaf
node of a decision tree is any node with branches pointing to it, but no branches
emanating from it. A trivial decision tree is one in which the root node is
a leaf node. Each non-leaf node of the decision tree is labelled with the name
of an attribute. Each branch emanating from a node is labelled with a value
for the attribute which labels the node. Each leaf node is labelled with a value
for the decision attribute. A decision tree can thus be defined recursively as
either a single node labelled with a value for the decision attribute (or Null in
the case where no decision can be made), or a node labelled with a non-decision
attribute from which a number of branches emanate, each branch leading to an-
other decision tree. Figure 2.1 illustrates the simple structure of a decision tree.
A null decision tree is a trivial decision tree with the label Null, indicating
that no value for the decision attribute can be determined. When illustrating a
decision tree, null decision trees are not usually shown. The depth of a decision

tree is the number of branches between nodes in any path from the root node of
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Attribute
A
Al A2
Decision Attribute
D2 B
B1 B2
Decision Decision
D1 D2

FIGURE 2.1: A simple decision tree. The root node of
this decision tree is labelled with attribute A. The branches

emanating from this node correspond to each of the valid values
for the attribute A. Leaf nodes correspond to values for the
decision attribute, with the possible decision values being D1

and D2.

the decision tree to a leaf node. The general concept of decision trees is covered
quite comprehensively in Moret (1982).

A performance element uses such a decision tree to determine a value for
the decision attribute for a given object. In its sumplest form, this value is found
by traversing the decision tree, beginning at the attribute-labelled root node,
and following the branch corresponding to the actual value of that attribute as
recorded for the object. This traversal continues until a leaf node is reached,

whereupon the value labelling the leaf node is returned as the decision.

The coverage of a decision tree refers to the ability of a decision tree to
give decisions for any object presented to it. Often, a decision tree will not have
total coverage. This can be the case when attribute B in Figure 2.1 actually
has three values rather than just the two shown, with no branch corresponding
to the third value. An object with the value Al for attribute A and B3 for

attribute B is not covered by this decision tree.
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A Tr-consistent decision tree is a decision tree for which the performance
element, when applied to the examples contained in the training set, returns
decisions which agree with those recorded in the training set. This definition of
consistency says nothing about the ability of the performance element to make

correct decisions for objects outside of the training set.

A decision tree is often thought of as representing a concept, and the
decision tree induction system is referred to as a concept learning system—
defined as a device for creating a concept corresponding to some partition of
a sample of objects which have been classified by a pre-established rule for

specifying a class (Hunt, Marin, and Stone, 1966).
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2.2 THE DIVIDE AND CONQUER ALGORITHM

The task of the learning algorithm described here is basically one of taking a
training set and generating a decision structure which can explain the decisions
associated with the objects in that training set. The decision structure so
constructed can then be used by a performance element to make decisions about

previously unseen objects.

The general algorithm begins with a training set, Tr, consisting of a set
of objects, each being an example of a domain expert’s decision. A number
of alternative partitions, S;, of the training set are considered—each S; repre-
sents an alternative branching pattern from the current node in the developing

decision tree. The set of p partitions to be considered will be denoted as
S = {51,5,...,5}

Each partition, S;, consists of a number of cells, each cell containing objects

from Tr. The n cells of a given partition are identified as C;, j =1,2,... n.

A best partition, S*, is chosen from S using some selection criterion.
Such a criterion is often represented as a cost function which assigns a cost
to each partition in S. Such cost functions are typically dependent upon the
C;’s. The partition corresponding to the minimum value of this cost function

is chosen.

The third step of the general algorithm involves constructing a discrimi-
nating description for each cell of S*. Such a description of a cell categorises
each object in that cell, and no other object in any other cell of S*. These

discriminating descriptions become the branch labels in the decision tree.

For the typical decision tree induction algorithm, a partition is based upon
the values of a particular attribute. The objects in each cell have a common
value for the chosen attribute. The discriminating descriptions are then sim-

ple tests on this attribute’s values, often described as the split points of the
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The Training Set B /

B1 B2

FIGURE 2.2: An illustration of the divide and conquer tech-
nique of decision tree induction. The original training set is
partitioned using attribute A. All objects in the cell of this
partition corresponding to a value of A1 have a decision of D2.
The other cell of the partition is further partitioned using the
attribute B. Fach of the cells in this second partition is ho-
mogeneous with respect to the values of the decision attribute.

The resulting decision tree is that of Figure 2.1

attribute. Thus a simple decision tree of the form presented in Figure 2.1 will re-
sult from this induction process, with the chosen attributes labelling the nodes,

as llustrated in Figure 2.2.

The final step tests a termination criterion which is used to express the
conditions under which this divide and conquer process should stop. If the
criterion is not met, then the cells of S* are each used as new training sets, and

the algorithm is re-applied to each.

The termination criterion typically identifies a training set whose objects all

record the same value for the decision attribute (i.e., homogeneous with respect
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to the values of the decision attribute) as one for which no further processing
is required. The common value for the decision attribute will then label the
corresponding leaf node. Processing also terminates whenever no attributes
remain upon which to partition the given training set. This may arise when
only categorical attributes exist, and all attributes have been used. That is,
each object has the same collection of attribute values, except for the decision
attribute. This can result from noise in the training examples, or because of a
lack of suitable attributes. In such a case the corresponding leaf node is labelled

with a decision of Null.

As pointed out by various researchers, including Kononenko, Bratko, and
Roskar (1984), for small training sets the selection criteria typically become
unreliable, because of the small sample sizes involved when the training set is
partitioned. Thus, a number of the decision tree induction systems terminate
the divide and conquering when the objects in a training set fail to meet certain
other conditions, leading to a form of tree pruning. (Quinlan (1982) and Arbab
and Michie (1985), however, indicate that small training sets are capable of

generating quite adequate decision trees.)

Tree pruning is the process of reducing the size of the decision tree, typically
by removing leaf nodes of the tree and combining branches. Pruning is useful
when the training set contains noisy data (data containing inaccuracies). It is
also useful in noisy domains, where the accuracy of attribute values can not be

assured.
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In summary the general algorithm is:
1. Counstruct S, the set of candidate partitions of the training set.
2. Using a selection criterion, select the best S* in S.
3. Find a discriminating description for each cell, C;, in S*.
4. For each (j, test the termination criterion:
4.1. If it is not met, then use C; as a training set and repeat from step 1.

4.2. If it is met, then a leaf node of the decision tree is formed, with an

appropriate decision associated with it.

This decision tree induction algorithm can be viewed as an instance of the
ubiquitous search paradigm. The search space consists of all simple decision
trees of the form illustrated in Figure 2.1. Such decision trees have simple tests
associated with the nodes (involving a single attribute) with branches corre-
sponding to the possible outcomes. The search algorithm begins by determin-
ing which attribute should appear as the label of the root node of the decision
tree. It then considers each child node recursively. Most decision tree induction
algorithms are a best-first, depth-first search algorithm with no backtracking.
The search space over which these systems operate is very large. All of the

algorithms search through this space under the guidance of various heuristics.

Actual implementations of decision tree induction algorithms differ primar-
ily along five dimensions: the type of attributes allowed; the type of descriptions
which can label a node and its branches and the consequent branching (binary
or n-ary); the selection criterion; the termination criterion; and whether tree
pruning is carried out. The earlier algorithms catered for categorical attributes
to the exclusion of integer attributes. This typically manifests itself in the
context of the selection criterion employed. Decision tree induction systems
typically use a single attribute, testing for its various values, as the discriminat-
ing description for the cells of a partition. More elaborate constructs are found

in conceptual clustering systems (Michalski and Stepp, 1983). Implementations
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also differ with respect to the number of cells allowed in a partition, which con-
sequently impacts upon the structure of the resulting decision tree—a number
of systems allow only binary partitions, leading to binary decision trees. The
termination criterion also differs between the various implementations, with
some using this criterion as a means of pruning. Other implementations begin
pruning once the decision tree has been fully constructed. A further step in
several implementations is to then convert the decision tree to a rule set, which

may again be pruned.
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2.3 THE DECISION TREE INDUCTION FAMILY

The Concept Learning System (CLS), developed by Hunt (Hunt, Marin, and
Stone, 1966), is the earliest decision tree induction algorithm. ID3 (Quin-
lan, 1982) and CART (Breiman et al., 1984) marked the beginning of a renewed
interest in decision tree induction, with ACLS (Paterson and Niblett, 1982)
and ASSISTANT (Kononenko, Bratko, and Roskar, 1984) developing upon ID3.
AOCDL, and in turn RG (Arbab and Michie, 1985), develop upon ideas in-
troduced in ASSISTANT. More recent systems such as ID4 (Schlimmer and
Fisher, 1986), ID5 (Utgoff, 1988), and ID5R (Utgoff, 1989) are natural progres-
sions from the original ID3 allowing incremental learning. The following table
lists those systems described in detail below. A summary box will follow the
detailed description of each system to identify its main features, including the
five dimensions introduced above. Figure 2.3 summarises the family tree of

these systems.

CLS Concept Learning System (Hunt, Marin, and Stone, 1966)
Quinlan’s CLS (Quinlan, 1979b)
D3 Iterative Dichotomiser 3 (Quinlan, 1982)
ACLS Analogue Concept Learning System  (Paterson and Niblett, 1982)
ASSISTANT (Kononenko, Bratko, and Roikar, 1984)
Structured Induction (Shapiro, 1983)
AOCDL (Bratko, 1983)
RG Rule Generator (Arbab, 1985)
C4 (Quinlan et al., 1986)
CART Classification And Regression Tree  (Breiman et al., 1984)
1D4 Incremental ID3 (Schlimmer and Fisher, 1986)
ID5R. Incremental ID8 (Utgoff, 1989)
2.3.1 CLS

The forerunner to all of the systems described here is Hunt’s Concept Learning
System which has its roots in experimental psychology. “The original moti-
vation for a CLS was to construct a simulation of human behaviour” (Hunt,
Marin, and Stone, 1966). CLS was primarily a subroutine for inducing decision

structures capable of being used for a pattern classification task. The pattern
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CLS (1966)

ID3 (1979) CART (1984)

ACLS ASSISTANT RG C4 1ID4
(1982)  (1984)  (1985) (1986) (1986)

CN2 ID5

(1989) (1988)
ID5R
(1989)

FIGURE 2.3: A simplistic overview of the genealogy of the
decision tree induction family. The dates are only indicative,
and often reflect the date of publication of an early paper de-
scribing the system rather than the actual date of development.

Refer to the text for clarification. After Quinlan (1986a).

here is the vector of values associated with each object. Hunt, Marin, and Stone

(1966) discuss a number of experiments with variations of the basic algorithm.

The CLS algorithm conforms to the general algorithm, with the exception
that the first step is implicit, in common with many decision tree induction al-
gorithms. CLS allows for categorical attributes only, and only binary partitions
of the training set are considered—Dbased upon particular attribute values. The

examples contained in one of the cells of a partition have a common value for
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the attribute upon which the partition is based. CLS begins by searching for
the most discriminatory attribute-value combination.

The selection criterion employed by CLS is based upon costs associated with
measuring attributes and with making incorrect decisions (Quinlan, 1979a).
Under a scenario where one decision is associated with the training set, the sum
of the resulting mis-classification costs associated with the incorrect decisions
is determined. Repeating this for each possible value of the decision attribute
and then taking the minimum, results in a measure of the cost of using a
single decision value as our decision tree. Call this 7Tj;. The training set is
then partitioned. For each cell of the partition a Ty is computed, and the sum
of these is added to the cost of actually measuring the attribute. Computing
this for each possible partition and taking the minimum gives a measure which
we will call 7}. The minimum of Ty and 71 1s then the cost of the resulting
decision tree. If T is the minimum, then there is no need to continue with tree
induction from this training set. Otherwise, the corresponding partition is used

to generate two new training sets.

This recursive algorithm for determining costs will ensure that the induced
decision tree will have minimal cost. This calculation is prohibitively expensive,
but can be approximated satisfactorily with much less calculation, resulting in

low cost, or at best minimal cost, decision trees.

Each node of the decision tree induced by CLS, except for terminal nodes,
will have only two branches, corresponding to the two answers to the question
“Does attribute A have value A;?”. Thus, binary decision trees are generated,
testing at each node for a specific value of a specific attribute. In general,
such an approach may result in paths through the decision tree in which a
single attribute may recur, testing for different values. The resulting decision
trees are potentially deep (having many levels). Hunt restricts the algorithm to
binary decision trees for the sake of simplicity. Multi-branching decision trees

are considered by Hunt, but primarily in the context of “future work.”
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The box below summarises the CLS algorithm. CLS deals only with categor-
ical attributes. It builds partitions based upon a single attribute and its values,
resulting in decision tree nodes labelled with the single attributes. The branches
emanating from a node correspond to the test for the value of the attribute. The
selection criterion uses a combined measurement and mis-classification cost, and
the divide and conquer process terminates whenever all objects in a training set
belong to the same decision class (i.e., have the same value for the decision at-
tribute), or whenever no attributes remain, or when further construction would

result in increased cost.

CLS
Attributes Categorical.
Nodes Single attributes (A4).
Branching Binary.
Branch Labels A= A; and A # A;.
Selection Criterion Minimise the combined measurement and

mis-classification cost of each attribute.

The latter is computed using look ahead.
Termination Criterion Homogeneous training set, or

no attributes upon which to partition remain, or

training set has the minimum cost.

2.3.2 Quinlan’s CLS

The renewed interest in CLS-type systems was sparked by Quinlan (1979a) when
he used a CLS-type system to induce decision trees in the domain of Chess.
Quinlan (1979b) further considered the problem of handling large training sets
in a memory-limited computer environment, again in the domain of Chess.
The windowing technique was introduced here as a key component of Quinlan’s
approach. With this technique a subset of the training set, called the window, is
used as the actual input to the induction algorithm. This window is augmented
with other objects from the full training set whenever exceptions to the induced

decision tree are found in the original training set.

The learning element described in these papers is a “simple and unsophisti-
cated relative of Hunt’s CLS” (Quinlan, 1979b). As with CLS, single attributes
label the nodes. However, branches corresponding to the various values of the

attribute are used, removing the restriction of binary trees. Ounly categorical
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attributes were, once again, considered. The feature of the system of most
interest is the selection criterion. The criterion is based upon the desire to pro-
duce a simple, and therefore general, decision tree, and uses estimates of the

complexity of the sub-trees which result from choosing a particular attribute

(Quinlan, 1979b).

Consider a partition of the training set based upon a single attribute. The
complexity of the tree that results can be related to the sum of the complexities
of the trees that are constructed from each of the cells in the partition. Assuming
a binary-valued decision attribute, we can further partition each of the cells
of the first partition into two subcells corresponding to the two values of the
decision attribute. If one of the subcells is empty, then a very simple, indeed
trivial, decision tree will result, consisting of just a leaf node. Similarly, if one
of the subcells is small, then it would be expected that the resulting decision
tree will be relatively simple, but not trivial. Summing the square roots of the
minimum of the number of items in the two subcells of each cell gives a lower
estimate for the complexity of the resulting tree. The attribute which results

in a partition which minimises this measure of complexity is chosen.

The termination criterion employed is the simple one of checking for empty

cells, or for cells containing a single value for the decision attribute.

In summary, Quinlan’s initial implementation of a concept learning system
deals with categorical attributes, with branching based upon the values of a
selected attribute. The selection criterion employed attempts to minimise the

complexity of the resulting decision trees.

Quinlan’s CLS

Attributes Categorical.

Nodes Single attributes (A).
Branching n-ary.

Branch Labels A;.

Selection Criterion Minimise estimated complexity.

Termination Criterion Homogeneous training set, or
No attributes upon which to partition remain.
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These early efforts by Quinlan to develop practical inductive learning sys-
tems spurred others into conducting further research. While the domain was
limited to Chess, Quinlan’s CLS served to prove the idea of using such a system
with large collections of examples. These systems were capable of generating

correct decision trees which sensibly summarised the input examples.

2.3.3 An Information-Theory Based Selection Criterion

Quinlan (1979b) makes mention of an information-theoretic model of complex-
ity under experimentation. A selection criterion based upon this information-
theoretic model is first presented in Quinlan (1982), and later in Quinlan
(1983b) and Quinlan (1983a). The basic idea is to use an estimate of the
amount of information gain that will result once a partition of the training
set has been constructed (based upon a single attribute). Then, the attribute
chosen 1s the one which best discriminates between the values of the decision
attribute. This selection criterion can also be viewed as computing the amount
of entropy associated with the attribute, defined in the context of the values
for the decision attribute, and choosing the attribute associated with the least

amount of entropy.

The information-theoretic model regards a decision tree as an informa-
tion source. Given an example, the decision tree generates a message which
is the value for the decision attribute. Information theory provides the formula
ZT:I —p; log(p;) as a measure of the information content of a message, where
p; is the probability of making a particular decision, with m possible decisions
in all. (This could be equivalently written as E;'n:1 Pj log(p%) which is of the
more familiar form for an entropy function.) This measure of information con-
tent is maximal when all decisions are equally likely (the p; are equal) giving
rise to the most uncertainty. It is minimal (zero) when one decision only is cer-
tain (p; = 1) and no other decision can ever be made (all other p;’s are 0). A

useful analogy due to Mingers (1989b) is with horse racing: “the more runners

and the more evenly they are matched, the greater the value of knowing the
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winner”. The probabilities are of course not known, but may be approximated
by the relative frequencies of the occurrences of the decisions in the training set.
This measure of information content will be denoted by I(Tr). Thus, 7(Tr) is
an estimate of the information content of a decision made by the decision tree
induced from Tr, or equally, the information needed to make a decision, given

only the decision frequencies in Tr (Mingers, 1989b).

Suppose that S is a partition of Tr, containing the n cells Cy,Cy, ..., Cy,
each cell corresponding to a single value for the attribute A, which has n pos-
sible values. In line with the general decision tree induction algorithm, if we
were to now consider each of these cells as new training sets from which to
construct n new decision trees, then I(C;) is a measure of the information con-
tent of decisions made by the decision tree constructed from Cj;. This is the
information content of C; given that we know that the attribute A has the
value corresponding to this cell. Taking the average of these measures weighted
by the number of examples in the cell leads to an estimate of the amount of
information required, in order to make a decision for some object, given a value

for the attribute A:

n

B(S) =Y =I(C))

i=1

where n; is the number of examples in C;, and N is the number of examples in

Tr.

Hence, by choosing a particular partition S of the training set we have a

gain in information which is given by:
Gain(Tr, S)=I(Tr) — E(S)

The best partition S* then is the S for which Gain(Tr,S) is maximal, or

equivalently, since I(Tr) is constant over S, for which £(S) is minimal.
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Let n;; be the number of examples in C; with decision attribute value D;

(With m different decision values in all). Then:

m

1(C;) = _ 4 4
(C) Z n; log nij
j=1
and,
n m n.. n..
B(S) =S DS Ll g My
(5) ZZlN(; 0, 10870)

Minimising F(S) is then equivalent to minimising

which is equivalent to minimising the final cost function:

n”

Cost(P ZZn”

i=1 j=1
recalling that n; = Z:Ll n;k. This can be summarised as:

Examples in cell

. Examples in cell ; ; -
Cost of partition = — E E i i o > log with this decision
with this decision Number of examples
cells decisions in this cell

Consideration of this selection criterion leads to the observation that a cost
of zero for any particular partition indicates that each cell of the partition
contains examples having a single common value for the decision attribute.
This is the most desired situation, as the decision tree constructed from such a
partition is of depth 1, minimising the complexity. Further it is observed that
there is a possibility of a number of candidate partitions being equally good
with respect to the selection criterion. Intuition suggests that this selection
criterion is unable to distinguish between attributes primarily in the case where

a number of attributes have a cost of 0 since it is less likely for two or more
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attributes to have the same non-zero cost computed for them, with respect to

a particular training set.

These observations, whilst not developed any further in this chapter, are
explored in Chapter 3 and taken advantage of by the MIL algorithm presented
in Chapter 4.

The information-theoretic cost function describe above has been deployed

as the selection criterion in a number of the decision tree building systems

described below.

2.3.4 ID3

The ID3 algorithm is motivated by the desire to produce simple and efficient
decision trees. 1D3 presents an approach which reduces the potential complexity
of the binary decision trees induced by CLS. As in CLS, the nodes of the
ID3 decision trees are single attributes, but, by allowing n-ary branching, any
attribute will now appear at most once on any single path through the decision
tree. Given a training set, each attribute defines just a single partition. This
partition comnsists of cells for which each member object has a common value
for the said attribute. Each of these values thus corresponds to a branch from

the appropriate node.

The information-theoretic selection criterion is used by ID3 to choose at-
tributes at each stage. The attributes with the most information content are

chosen early on, thus the decision trees tend to have minimal depth.

A number of conditions are checked in order to determine whether the divid-
ing and conquering should terminate. As with CLS, a single decision cell (i.e., a
homogeneous training set) indicates that a single decision can be made, and no
further work is required of this training set. If no attributes remain upon which
to partition the training set, then a decision of Null must be made. In addition,
Quinlan (1983b) introduced a chi-square test for stochastic independence for
deciding when to stop, to account for the possibility of there being noise in the

training set. The basis of using the chi-square test statistic is that an attribute
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will be selected for splitting upon only if the hypothesis that the attribute is
independent of the decision class over the training set can be rejected with a
high degree of confidence. The use of this extra termination criterion results

in tree pruning leading to dramatic reductions in the size of the decision trees

(Quinlan, 1983b).

In summary, the goal of ID3 as an inductive concept learning algorithm is
to produce decision trees with high execution efficiency. The pruning method

introduced in ID3 helps to reduce the complexity of the resulting trees.

ID3
Attributes Categorical.
Nodes Single attributes (A).
Branching n-ary.
Branch Labels A=A;,t=1...n.
Selection Criterion Information-theoretic.

Termination Criterion Homogeneous training set, or
No attributes upon which to partition remain, or
Remaining attributes fail the chi-square test.

2.3.5 ACLS

ACLS (Michie, 1983; Paterson and Niblett, 1982; Shepherd, 1983) extends ID3
by allowing the input data to be described in terms of integer attributes, as
well as categorical attributes. The information-theoretic selection criterion is
again used to associate a cost with each attribute, whether categorical or in-
teger. In terms of the general algorithm, the set of partitions, S, contains one
partition corresponding to each categorical attribute (as in ID3), but with many
partitions corresponding to each integer attribute. For an integer attribute Ay,
the objects of the training set are considered as ordered with respect to that
attribute. One partition of Tr then consists of two cells, C'y and C2, such that
the maximum value for A7 in Cy is less than the minimum value in C5 (some
number between the maximum and minimum is chosen as the split point). The
selection criterion, as applied to these binary partitions, is thus quite simplified,
although up to n — 1 (with n distinct values for the integer attribute found in

Tr) possible partitions must now be considered for this single attribute.
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If an integer attribute Ay is chosen to label a node then that node will have
two branches leading from it. One branch will be labelled with “< V7 and the
other with its complement “> V7. The split point V is the mid-point of the

two cells of the chosen partition P. That is,

max value of Ar in C1 + mun value of Ar in Cs
B 2

The ACLS system is written in Pascal, and a number of commercial deriva-
tives of it have been developed, including Expert-Ease and Rule-Master (Michie
et al., 1984).

ACLS

Attributes Categorical and integer.

Nodes Single attributes (A).

Branching One branch for each value of A for categorical A.
Two branches for integer A.

Branch Labels A= A;,2=1...n for categorical A.
A<V, A>V for integer A.

Selection Criterion Information-theoretic.

Termination Criterion Homogeneous training set, or
No attributes upon which to partition remain.

2.3.6 ASSISTANT

ASSISTANT (Kononenko, Bratko, and Roskar, 1984) is a variant of ID3. It
was developed as an attempt to deal with a number of observed deficiencies of
ID3. These deficiencies arose in the context of building diagnostic rules in a
medical domain. ASSISTANT extends ID3 by considering the problems relating
to the existence of multiple-valued attributes. Early descriptions of ID3 treated
only binary-valued attributes. ASSISTANT introduces a new approach to tree

pruning and is able to automatically select good training examples.

A key observation made by Kononenko, Bratko, and Roskar (1984) and
empirically demonstrated again by Williams (1987) (and presented in Chapter 3
below) was that the information-theory based selection criterion was biased
toward attributes with more values. Quinlan (1985) provides an analysis of this

situation, leading to the same conclusion. The solution proposed in ASSISTANT
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is to consider only binary decision trees. Although this is reminiscent of CLS,
it is more general, allowing subsets of values of a categorical attribute to be
assoclated with each branch of the decision tree, rather than just one. For

integer attributes, the technique introduced in ACLS is followed.

The partitions considered are thus always binary. For a categorical at-
tribute A¢, a subset of its values is identified for the purpose of partitioning
the training set into two cells. One cell will contain all those objects of the
training set which have a value for A¢ contained in the identified subset of
values. The other cell contains the remaining objects. Each distinct subset of
the values of the attribute As describes a candidate partition. An attribute
with n values leads to at most 27! — 1 candidate partitions after trivial and
symmetric subsets of the values are removed. Such an approach removes the
bias against binary partitions, since only binary partitions are considered, and
it is claimed to lead to smaller decision trees with an improved classification

performance (Kononenko, Bratko, and Rogkar, 1984).

The termination criterion used by ASSISTANT also differs from ID3’s ter-
mination criterion. The induction process terminates when a measure of the
amount of information resulting from the construction of a sub-tree from the
current training set is less than the expected amount of information required to
make a decision for an object. Kononenko, Bratko, and Rogkar point out that

although this criterion is ad hoc it worked well in their experiments.

Two further features of ASSISTANT are that it can automatically select
good training examples, and that it handles hierarchical classes of decisions
and attribute values. ASSISTANT allows for the automatic selection of good
training records based on Bayesian probabilities, which can be contrasted to
the windowing technique introduced by Quinlan (1979b). Hierarchical classes

allow decision trees to make decisions at different levels.

Whilst Kononenko, Bratko, and Roskar report that ASSISTANT results in
better prediction and smaller decision trees, Quinlan (1985) expresses some

reservation. ASSISTANT’s method, it is reasoned, “could lead to decision trees
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that are even more unintelligible to human experts than is ordinarily the case,
with unrelated attribute values being grouped together and multiple tests on
the same attribute”. Kononenko, Bratko, and Roskar do point out, as does

Shepherd (1983), that binary trees are often poorly structured.

ASSISTANT
Attributes Categorical and integer.
Nodes Single attributes (A).
Branching Binary.
Branch Labels AES, AgS,or ALV, A>V,.
Selection Criterion Information-theoretic.

Termination Criterion Homogeneous training set, or
No attributes upon which to partition remain, or
Information content < information required.

2.3.7T RG

The rule generator (RG) of Arbab (1985) is a descendant if ID3 which aims to
produce linear decision trees. (A linear decision tree is one in which each node
has at most one non-leaf child.) The motivation is the desire to produce deci-
sion trees which facilitate human understanding. This differs from D3 which
primarily aims to produce decision trees with high execution efficiency, rather
than trees which are readily accessible by humans (Arbab and Michie, 1985).

It is argued that a linear decision tree is more easily understood.

RG follows on from the linear decision tree induction system AOCDL de-
veloped by Bratko (1983). AOCDL implements a backtracking, heuristic search
algorithm, aiming to produce an almost linear decision tree. A non-linearity
measure is used to guide this search process. Little consideration is given to the

execution efficiency of the resulting decision tree.

RG embodies the basic ideas introduced by AOCDL, with the additional goal
of producing more efficient decision trees than does AOCDL. Although AOCDL
produces linear trees, they are very inefficient compared to the trees produced
by ID3. Efficiency is measured in terms of the average length of paths that are

traversed when using the decision tree to classify an object.
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The non-linearity measure RG uses, as applied to a decision tree T, is:

1 n
NL(T) = =Y (NL(T3) + (n — i) x IN(T})).
n i=1
Here, n is the number of branches emanating from the root of the decision tree
T, T; is the tree rooted at the ith branch, and IN(T;) is the number of internal

(non-leaf) nodes of the tree T;. The T; are assumed sorted in increasing order

of IN(T;). NL(T) = 0if T is a leaf node.

In addition to this non-linearity measure, a measure for the average exe-
cution cost of the decision tree is given by Arbab and Michie (1985). Suppose
the attributes Ay ... A, appear in the decision tree T, and let Ny ... N; be the
labels of the non-leaf nodes of the decision tree (so t > n, and each Nj is just
some A;). Further, let ¢(A;) be some cost associated with attribute A4; (e.g., the
cost of obtaining a value for it). Finally, denote by T'(N;) the number of objects
in the training set associated with node N; of T'. If Ny is the root node, then
T(N7) is just the size of the training set. If Ns is a node appearing immediately
below the root node, Ny, and Ny is the attribute A; and the branch from Ny
to N is labelled with Vj, then T'(N») is the number of objects in the training

set with A; = Vj. The average cost of decision tree 7" is then:

Yooy T(Nj) x e(Nj)
T(N1)

The strategy employed by RG is to use the AO* algorithm (Nilsson, 1980)
with an over-optimistic estimate for the non-linearity of the decision tree. The
And/Or tree used is made up of attribute nodes (the Or nodes) and attribute
value nodes (the And nodes), the root node of the And/Or tree being an And
node. (See Figure 2.4.) The attribute nodes represent alternatives for the choice
of attribute at each node in the final decision tree, and the attribute value nodes

represent the links of the final decision tree, there being one link (i.e., attribute
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N
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/K\ \ A /[A\
0 10 10 10 1
FIGURE 2.4: The AND/OR tree structure searched by RG.

This search tree embodies all possible decision trees based upon

two binary-valued attributes, A and B.

value node) for each value of the attribute. The And nodes can be thought of

as subproblems.

RG

Attributes Categorical.

Algorithm AO¥* using optimistic estimate for non-linearity.

Nodes Single attributes (A).

Branching n-ary.

Branch Labels A=V.

Selection Criterion Non linearity of partially constructed tree.
Number of expected internal nodes.
The attributes entropy measure.

Termaination Criterion All objects have same decision.

2.3.8 Quinlan’s Gain Ratio Criteria

Reference was made in Section 2.3.6 to the inherent bias in the information-
theoretic selection criterion toward multi-valued attributes. A solution to this
problem was presented in ASSISTANT in the guise of restricting all branching
to just binary tests. Another solution involves normalising the selection crite-
rion. Kononenko, Bratko, and Roskar (1984) first considered this with their

normalised informativity function, which has as a divisor the logarithm of the
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number of values associated with an attribute. Thus, instead of maximising the

gain in information, as represented by:
Gain(Tr, S)=I(Tr) — E(S)

where S is a partition of the training set Tr, we now maximise:

. . B [(Tr) - E(S)
NormalisedGain(Tr, S) = logy(Number of values of A)

over all attributes A.

Kononenko, Bratko, and Rogkar point out though that a new kind of bias
1s introduced. This arises in the case where the values of an attribute are not
of equal importance. Indeed, it was this observation that lead them to restrict

their decision trees to being binary.

Quinlan (1985) also identified a bias against multi-valued attributes under
this normalised gain. He notes that “an attribute with eight values would have
to achieve three times the information gain of a binary-valued attribute if it

were to be the chosen attribute”.

The Gain Ratio criterion was first introduced by Quinlan (1985) and further
discussed in Quinlan (1986a), in response to this observation. It was again a
normalised information-theoretic selection criterion. As with Quinlan’s previous
selection criterion this normalised function is based upon the idea of information
content. A measure of the information content of just knowing the value of an
attribute A can be formulated using the relative frequencies of the values of the

attributes:

|C.

J\;|10g C.

il
e

IV(A) = - Xn:

In this formula the partitions are as in ID3, and |Cj| is the size of the cell C;
of the partition S based upon the attribute A. C; corresponds to the attribute
value A;, with attribute A having n possible values. N is the size of the training

set Tr.
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Quinlan uses the original information-theoretic based Gain function to filter
out the below average attributes before using the normalised function. That
is, only those attributes with a computed Gain at least equal to, or greater
than, the average gain in information, will be compared using the normalised

function. The chosen attribute is the one which maximises the gain ratio:

I(Tr) — E(S)
TV (A)

The heuristic of selecting from among the average or greater attributes (with

respect to Gain) helps to avoid favouring poor attributes which have small

values of [V(A).

2.3.9 C4

The C4 induction system (Quinlan et al., 1986) evolved out of ID3. It incorpo-
rates many of the enhancements to the original ID3 introduced in the systems
described above: C4 allows integer attributes and employs the gain-ratio se-
lection criterion. It further differs from ID3 in the pruning that it carries out
after constructing a decision tree. Such an approach to pruning was introduced
by Breiman et al. (1984) in their CART algorithm. C4 retains the window-
ing approach of ID3 where subsets of the whole training set are employed in

constructing the decision tree.

C4 attempts to prune a decision tree by replacing sub-trees with a leaf.
This process is performed under the guidance of the information contained in
the training set. When such a modified decision tree is applied to the original
training set classification errors will result. The goal though is to decrease the
complexity of a decision tree (measured in terms of path length, where a path
begins at the root of the tree and ends at a leaf)), whilst maintaining its accuracy
at classifying objects (usually from the training set). Thus a sub-tree is replaced
by a leaf if it has the least ratio of the increased error rate to the complexity
of the sub-tree over all sub-trees, and this ratio is significantly worse than the

average over all sub-trees of the decision tree.
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Later developments of C4 have introduced further pruning techniques, in
parallel with the conversion of decision trees to sets of rules by way of the

enumeration of all paths through the decision tree (Quinlan, 1986h).

As with ID3 and ACLS, commercial systems based upon the ideas introduced
in C4 have become available, including TODAY-ES (Morley et al., 1988).

C4

Attributes Categorical and integer.

Nodes Single attributes (A4).

Branching One branch for each value of A for categorical A.
Two branches for integer A.

Branch Labels A= A;,:=1...n for categorical A.
ALV, A>V for integqr A. i

Selection Criterion Gain ratio: ,Apformation Gain

Information Content”
Termination Criterion Homogeneous training set, or
No attributes upon which to partition remain.
Pruning Replace sub-tree by leaf if ratio of increased
error rate to complexity of sub-tree is worse
than average.

2.3.10 CART

At about the same time that Quinlan was developing ID3, Breiman et al. (1984)
independently developed the CART decision tree induction algorithm. The ap-
proach adopted by CART is basically the same as that of ID3. Input examples
consist of attribute-value lists, each example having a decision associated with
it. Both categorical and continuous attributes are handled. The divide and
conquer process is followed, but allowing only binary partitions. In this regard
CART and ASSISTANT are similar. Primary differences between CART and the
ID3 descendants are to be found in the selection criterion, and the emphasis
upon pruning.

The CART algorithm uses a selection criterion known as Gini (although
others are considered by Breiman et al. (1984), including the so called twoing
selection criterion). The Gini selection criterion involves the use of the Gini

index of diversity which is applied to a training set and can be summarised as:

i=1 j=1
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Here m is the number of possible values of the decision attribute, and p; is the
proportion of examples in the training set with decision value ¢. This Gini index
of diversity is then calculated for the original training set, and for each of the
training sets that results from the binary partition of the original training set.
The partition which maximally decreases the diversity is chosen. Building upon
earlier work in statistics, CART employs a technique which dramatically reduces
the amount of computation required in order to choose the best partition from

amongst the 2"~! — 1 possible partitions for each attribute (Crawford, 1989).

The pruning employed by CART uses a heuristic based upon cost and com-
plexity. The cost here is calculated as the error (or mis-classification) rate of
a tree, and the complexity is measured in terms of the number of leaves of
the tree. The error rate 1s determined by application of the decision tree to
examples not drawn from the training set. The CART algorithm searches for
the smallest decision tree having an acceptable mis-classification rate. Craw-
ford (1989) provides a detailed description of the process, as well as alternative

techniques within the CART framework.

CART
Attribute Categorical and integers.
Nodes Single attributes (A4).
Branching Binary.
Branch Labels AcS, AgS,or A<V;,, A>V,.
Selection Criterion Gini index of diversity.
Termination Criterion Homogeneous training set, or
No attributes upon which to partition remain.
Pruning Cost /complexity heuristic.
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2.4 DISCUSSION

The collection of systems presented here constitute the founding core of the
decision tree induction family of systems. These systems represent the starting
point of the work to be presented in the following chapters. Below is a review
of other research related to decision tree induction. This is followed by a dis-
cussion of some relevant issues concerning the decision tree induction process

and algorithm.

2.4.1 Other Related Research

Much interest in decision tree induction has emerged in the research and devel-
opment community as a result of the development of a number of successful ex-
pert systems using decision tree induction algorithms (see, for example, Michie
(1987)). Variations and enhancements to the basic decision tree induction ap-
proach, changing in some basic way the usage of the decision tree induction
algorithm, have been suggested and implemented. The early idea of structured
induction, and the more recent advances in incremental decision tree induction

are two such developments.

The method of structured induction was introduced by Shapiro (1983) in his
doctoral thesis and later published in book form (Shapiro, 1987). This approach
to decision tree induction tackles the task in a style reminiscent of structured
programming. Structured induction is more a methodology than an induction
algorithm per se. This methodology introduces the idea of constructing a num-
ber of decision trees, each corresponding to different levels of detail. Structured
induction is presented by Shapiro in the context of an ID3-based decision tree

induction system.

Shapiro’s approach begins with a collection of “super-attributes”, which di-
rectly determine the class of an object. These super-attributes are the top-level
attributes of the decision tree, and are distinguished from those attributes used
to describe the objects of the training set. For each of these super-attributes,

a decision tree is constructed which will determine a value for this attribute.
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These decision trees may possibly make use of new super-attributes. This pro-
cess continues until, at the lowest level, the decision trees are expressed solely

in terms of the actual attributes used to describe the objects in the training set.

Such a process has the primary advantage of producing simple decision
trees. The training set used to construct any one decision tree is typically small
and thus the resulting decision trees are also typically small. Consequently,
the resulting knowledge, represented as a collection of decision trees rather
than a single, usually opaque, large decision tree, is more amenable to human

understanding.

A relevant point to note regarding structured induction is that it is a
methodology which is largely independent of the actual induction algorithm
employed.

A deficiency of decision tree induction algorithms identified by a number
of researchers is their inability to effectively handle new training instances that
become available after the decision tree has been built. ID3’s approach, for
example, would be to reconstruct the decision tree using the original training
set suitably augmented. ID3 is essentially a non-incremental algorithm. Con-
sideration of this problem has lead to enhancements to the basic ID3 algorithin,
resulting in the incremental decision tree induction systems of 1D4, ID5, and

ID5R. Only categorical attributes are considered in the following descriptions.

The 1D4 algorithm (Schlimmer and Fisher, 1986) represents an early at-
tempt at building an incremental version of ID3. ID4 takes advantage of the
observation that the information-theoretic selection criterion used in ID3 oper-
ates upon a count of the number of objects belonging to each decision class for
each cell of the various alternative partitions of the training set. For a given
node in a decision tree, ID4 maintains a record of this information. Consider, for
example, an attribute B which can potentially label a particular node, where B
has the values B;,i = 1,2,...,n. A count is kept of the number of examples at
this node with a value of B; for B and a decision of D; for the decision attribute

for each possible D;. It is these counts for each of the possible attributes that



§2.4 Decision Tree Induction 50

are used in the ID3 cost function. They thus embody all the information needed
to select an attribute to label a particular node, without recourse to the original

training examples.

From this store of information ID4 1s able to restructure the decision tree
appropriately as each new example is presented to it. This is effected by re-
computing the cost function once the counts have been updated with the new
example. If this re-calculation for a particular node does not change the choice
of attribute, then the example is propagated to the appropriate child node, and
the process repeated. If on the other hand the re-calculation indicates a differ-
ent choice of attribute to label the current node, then all sub-trees below this
current node are removed, and re-generated as new instances arrive. Usually,
ID4 builds the same decision trees as ID3 since the information-theoretic-based

criterion makes good choices.

Utgoff (1989) identifies a condition which can lead to the ID4 algorithm
thrashing. This arises when the cost function is unable to distinguish between
attributes or when it can only marginally distinguish between them. New ex-
amples may cause the choice of attribute to oscillate between two or more, thus

requiring new sub-trees to continually be built.

The ID5 algorithm (Utgoff, 1988) and its successor ID5R (Utgoff, 1989)
further develop the idea of caching the information contained in the training
examples, as introduced in ID4. However, they go one important step further
by retaining all the necessary information from sub-trees as they are collapsed
rather than discarding it completely. This allows the ID5 algorithms to rebuild
the sub-trees as if the original training examples were still available. To do
this ID5 records at the leaves of a decision tree those portions of an example’s
description not implicitly recorded in the decision tree. When an attribute at a
node is earmarked for removal, to be replaced by a better attribute, a process

which restructures the sub-trees below this node is invoked.

This restructuring process will, through recursion, ensure that each sub-

tree below the current node for which a change of attribute (from B to C say)
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is required, has the attribute C at the root. These sub-trees are then severed
at the original node (originally labelled with B), forming a number of disjoint
trees, corresponding to each value of the attribute B. For each of these trees,
the attribute C is moved to the root, and the attribute B becomes the label
of the root of each sub-tree. These sub-trees can now be merged to generate a
single decision tree with the appropriate root. This is shown diagrammatically

in Figure 2.5.

This intelligent restructuring process makes implicit use of all the relevant
training examples presented to the system whenever an attribute labelling a
node is found to no longer be as important as another. Thus ID5 is able to more
fully utilise all the training examples, unlike ID4 which must simply remove sub-
trees when attribute changes are required. Further, ID5 with just a little more

effort can produce exactly the same decision trees as generated by I1D3.

The non-incremental nature of decision tree induction is of course not
unique to ID3. Recent work has also addressed this same deficiency in the
context of the CART algorithm. Crawford (1989) introduces a first attempt at
an incremental CART algorithm by identifying those parts of a tree requiring

regeneration and re-applying the algorithm to just those parts.

Theoretical considerations of decision tree induction are scarce. Goodman
and Smyth (1990) provide some initial forays into a consideration of the theoret-
ical aspects of the information-theory basis of decision tree induction algorithms
like ID3. They present a model of decision tree induction very similar to that
presented as the general algorithm above. This is used as a basis from which to
analyse conjectures about decision tree induction (such as the utility of noisy
data). Goodman and Smyth justify the use of decision tree induction algorithms
and conclude that they are well-founded. Deeper theoretical analyses remain

to be carried out.
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FIGURE 2.5: ID5 (and ID5R) retains enough information
about the training examples presented to it to be able to re-
structure a decision tree when a new example causes a change
of attribute for the root node. In this example, the attribute
associated with the root node is changed from B to C. For the
leaf node of the tree, the values of those attributes not actu-
ally implicitly represented in the decision tree (by way of the
attributes on the path to the leaf node) as they appear in past
training examples must be recorded. These are not shown in

this figure. Fashioned after Utgoff (1988).

2.4.2 Issues

Decision tree induction algorithms, and algorithms for learning from examples
in general, have certainly demonstrated their practicality. There are however a
number of unresolved problem areas, and some are discussed below. Many of

these problems relate to either shortcomings in the actual algorithm or in the
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representation. Some have already been discussed above, and most have also
been identified and considered by others.

Missing information. In practical applications examples often can not
be completely specified, in the sense that some attributes may have missing
values. Such examples may be found amongst those that are made available to
a learning algorithm, or amongst those which are presented to a performance
element for decision making. This is particularly the case case where the domain

of the application is described in terms of a large number of attributes.

Missing attribute values can be handled in a number of ways by the learning
element. For example, the distribution of values for an attribute, as found in a
training set, can be used to fill in a value for an attribute with an unknown value.
Similarly, the particular example can be broken up into fractional examples,
each having one of the possible attribute values, and weighted according to the
known distribution of values. This approach of using the known distribution of
values was suggested by Kononenko, Bratko, and Roskar (1984) in the context
of the ASSISTANT system. Quinlan (1986a) reports upon another approach
suggested by Shapiro, in which a decision tree is built from those examples
having values for the attribute in question, where the decision attribute of the
decision tree is this same attribute. The original decision attribute is now
regarded as just another attribute. Such a decision tree could then be used to

determine a value for the attribute of the example having a missing value.

Quinlan (1986a) claims that these methods for determining unknown at-
tribute values “give unconvincing results”, and are particularly problematic
when several attributes have missing values. Quinlan goes on to further con-
sider the introduction of a new attribute value called “unknown” to handle such
missing values, but observed anomalies. Quinlan then introduced the idea of
“distributing” the example in proportion to the known distribution of values for
that attribute. This approach requires only a simple modification to the cost
function. Once an example with an unknown value for a chosen attribute has

been used in this manner, it is disregarded and not passed down to any children
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nodes. Such an approach has been found to provide quite satisfactory results,
and has been implemented in, for example, TODAY-ES (Morley et al., 1988).
In terms of the performance element, missing attribute values can be han-
dled by considering all paths emanating from the corresponding node in the
decision tree. All decisions can be collected and some form of conflict resolu-
tion used to choose one. Quinlan (1986a) considers a similar approach and finds
it quite appropriate. Alternatively, all decisions could be returned, with an in-
dication that without knowledge of the missing attribute value, these decisions

could not be distinguished.

An issue related to missing attribute values is the cost of obtaining attribute
values. It might be the case that a missing attribute value can be determined,
but has not yet been so, primarily because the cost of obtaining a value for the
attribute 1s high. Such attributes should only be determined by a performance
element if all other avenues for making a decision have been exhausted. Such
knowledge has only occasionally been incorporated into the decision tree in-
duction paradigm. CLS, for example, incorporated an attribute’s measurement

cost in its selection criterion, and a more recent example can be found in Tan

and Schlimmer (1990).

Severe limitations on the use of a decision tree occur if such expensive
attributes appear early in the tree structure. For example, if such an attribute
labelled the root node of the tree, then a value for it must always be determined
before that decision tree can be used. Such an observation leads one to question

the adequacy of the decision tree for representing knowledge.

Yet another related issue is the problem of missing branches (which is also
considered by Cheng et al. (1988)). During the step of partitioning a train-
ing set according to some categorical attribute, not all values of that attribute
may be represented in the training set. Thus a decision tree based upon this
partition will fail to provide a decision for relevant examples with these un-

represented values. In this sense, the decision tree induction algorithm will
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generate trees which are too specific. Cheng et al. further identify the irrele-
vant values problem, which again leads to over-specialisation by requiring that
a branch be created for every value of an attribute, irrespective of the relevance
of the attribute values. Their solution is to consider the information content of
attribute-value pairs, and then, for the selected attribute, create branches for
those most informative values, lumping the rest of the values together to form
a default branch. This algorithm, identified as GID3, empirically outperforms

ID3 on a number of measures.

Adequacy of representation. One of the important goals of knowledge
acquisition is to produce a knowledge base for use in an expert system, with the
knowledge represented in an easily accessible form. The knowledge represents
a model of the domain from which it was generated. A common criticism of
decision tree induction algorithms is that they induce opaque tree structures.
Whilst the algorithms generally guarantee to produce correct models (ignoring
the issue of noise), it is observed that the resulting trees contain too little
conceptual structure (Arbab and Michie, 1985). This manifests itself in the
guise of an expert puzzling over the significance of various paths through the

tree.

Limated generality. A decision tree is correct if it correctly classifies the
training data. However, a correct decision tree may not necessarily reflect even
some of the simplest generalisations that can be made from the training set. For
example, consider a decision tree constructed from training examples involving
just three attributes: A, B, and C. Just one attribute can be chosen for the root
node of the tree—suppose it is attribute A. Suppose further that all examples
in the training set for which attribute B has the value 2 have the same decision.
This fact can not be easily represented in the decision tree. A solution to this
problem is presented in C4, Quinlan’s successor to ID3. In C4 a single ID3
decision tree is converted to rules, and then manipulated as rules in order to

gain generality.
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Converting a given decision tree to an equivalent set of rules is a straightfor-
ward task, and one which is considered in more detail in the following chapters.
The inverse operation of transforming a given, arbitrary rule set into a decision
tree is, in general, impossible. Rules are often found to be a more natural repre-
sentation in terms of human perception. Further, individual rules can (ideally)
be reviewed and modified in isolation. Thus, rules generated from a decision

tree are more accessible (to the domain expert).

Size of decision tree. There is little doubt that smaller tree structures
can be visually appealing. The larger structures that often arise when many
attributes and many examples are involved can be daunting to the domain
expert. Whilst the domain being modelled may be complicated, human un-
derstanding of, and appropriate functioning within, a particular domain begins
with conceptually simple models. The structured induction approach addresses
this problem by considering sub-models of a domain, which form just a part of
the whole model. Also some of the decision tree induction algorithms presented
here have addressed this problem by introducing heuristics based upon human

understanding of the resulting trees (like linearity).

Replication. Pagallo (1989) also identifies a problem with the decision tree
representation, referred to as the replication problem. With the basic decision
tree structure there is no easy way to cache common sub-trees. Common sub-
trees may arise quite naturally and correspond to the situation where a body
of knowledge may be applicable in different situations. The different situations
correspond to different combinations of attribute values, and may result in the
common body of knowledge, represented as a sub-tree, being duplicated. This
situation is alleviated in C4, for example, by the process of appropriately drop-
ping conditions from the rules generated from a decision tree (Quinlan, 1987b).
Many redundant conditions and rules can be effectively eliminated in this way.
Pagallo presents a more flexible approach working with Boolean attributes and
looking for opportunities to combine attributes, effectively allowing combina-

tions of attributes to label tree nodes. Such combinations of attributes are in
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fact treated as new attributes and the original training set is augmented with
these new attributes.

A related restriction fundamental to the types of decision tree induction
algorithms presented here is the association of single attributes with the nodes
of the tree. Since each branch emanating from a node corresponds to a single
value of the attribute which labels the node, the common sub-tree structures
cannot be cached if the strict structure of the tree is to be maintained. Also,

since only one attribute ever labels a node, we are restricted to simple tests.

Noisy data. The decision tree induction algorithm is compromised in
the presence of noisy data. Noisy data is defined as data containing incorrect
attribute values or incorrect decisions. A common characterisation of this prob-
lem is the training set containing examples having a common decision with a
very small number of exceptions. These exceptions might be regarded as noise
in the training set, and thus ignored. Such an approach to handling noise in
this fashion is identified as tree pruning and is handled differently in C4 and
CART, for example. A recent empirical study of decision tree pruning methods
identifies a number of methods that perform well (Mingers, 1989a). This study
also concludes that there is “no significant interaction between the creation [of

a decision tree] and pruning methods”.

A problem of inconsistent examples may also arise in constructing decision
trees. This is identified as noise or as indicating a shortage of appropriate
attributes. Under the assumption that it is noise, pruning is often used to
eliminate it. For example, if 9 objects have decision D1 and a 10th has decision

D2 then presumably we could say that the D2 decision is noise.

However, it is not always the case that inconsistencies in the training exam-
ples result from noise. It may be the case that the attributes used to describe
the examples are inadequate in some cases, indicating that more attributes
are required in order to produce appropriate decision trees. Most induction
algorithms rely heavily upon the sufficiency of the supplied attributes to appro-

priately describe the examples.
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Research addressing this and the related problem of the supplied attributes
being inadequate, or inappropriate, for describing the final concepts, typically
investigates techniques for constructing new attributes (see Matheus and Ren-
dell (1989) and Pagallo (1989) as examples of recent efforts). Such innovation

is extremely difficult to automate.

The problem of training subsets with apparent small exceptions to the gen-
eral rule is related to the so called “problem of small disjuncts” (Holte, Acker,
and Porter, 1989). An important observation here is that paths through a deci-
sion tree which correspond to relatively few of the training examples have higher
mis-classification rates since they are based upon too few examples. Approaches
to tree pruning generally target for removal those leaves of the decision tree cor-
responding to the fewest training examples. However, this may remove those
paths through a decision tree corresponding to genuinely exceptional cases. This

problem remains for further research.

Adequacy of selection criterion. Mingers (1989b) observed that the
choice of selection criterion has little bearing upon the accuracy of the resulting
decision trees. Thus, a selection criterion which tends to produce decision trees
satisfying some heuristic requirements (like linearity or minimal depth) can be
chosen to suit the needs of the particular application. This provides quite a

degree of flexibility in constructing decision trees.

Another issue of concern in relation to selection criteria is their inability to
always provide a single choice. Often, arbitrary decisions must be made. The

following chapters further identify this problem and investigate how it may be
addressed.
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2.5 THE GENERIC ALGORITHM

A family of decision tree induction algorithms has been presented in this chap-
ter. In the following chapters reference to the “decision tree induction algo-
rithm” is to be interpreted as a reference to a generic algorithm which imple-
ments the divide-and-conquer technique introduced with the following assump-
tions, unless otherwise explicity stated. Candidate partitions are assumed to
be constructed by considering single attributes as does ID3, and thus candidate
descriptions consist of a test of an attributes value. Any selection criterion (or
cost function) can be employed by this generic algorithm, but explicit refer-
ence will be made to the information-theoretic cost function. A homogeneous

training set will be the assumed termination criteria.

The acronym DTIA will be used to refer to this generic decision tree induc-

tion algorithm.



Experiments in
3 Decision Tree Induction

This chapter identifies a number of properties of a decision tree induction algo-
rithm and provides experimental support for them. These experiments provide
a basis from which a technique for improving upon the induced decision trees is
developed (Chapter 4). An empirical approach is adopted so as to gain a mea-
sure of the performance of such learning systems when applied to actual data.
Those aspects of the algorithm considered here have received scant attention in

the decision tree induction literature.

For these experiments, use is made of the Australian Resources Information
System (ARIS) database (Walker, Cocks, and Young, 1985), being a sizable
collection of data, recording numerous environmental features for all regions
of Australia. A training set of expertly classified examples, drawn from this
data, has previously been used to construct a linear model for the prediction
of cattle grazing viability in rangeland regions of Australia (Cocks, Young, and
Walker, 1986). This same training set 1s used in the experiments described here

to construct decision trees for the prediction of grazing viability.

Whilst the ARIS domain is used to guide the direction taken in these exper-
iments, many of the experiments are repeated using data from a very different
domain—that of credit approval. Such additional experiments provide a broader

perspective.

The data used in these experiments is complete, in that no attribute values
are missing. Whilst missing attribute values is an important issue itself, it is
not considered in this thesis. The data here is also assumed to be, and believed
to be, accurate. Once again, the important issue of noisy data is beyond the
scope of this thesis. The focus is upon the use of decision tree induction with

complete, noise free, but relatively small training sets.

Page 60
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Experiments, such as those presented here, provide insights into the sensi-
tivity of the decision tree induction algorithms—different results are obtained
from simple variations to the way in which the algorithm is used. Credence
is given to the view of decision tree induction as a knowledge acquisition tool
rather than a machine learning tool in its own right. That is, a decision tree
induction algorithm, as a tool, can provide the knowledge engineer with a col-
lection of prototype knowledge-bases. These knowledge-bases are not the end

product, but rather, the starting point of the knowledge engineering process.

Three series of experiments will be described. The first concerns proper-
ties relating to the precision and the bias found in selection criterion. The
second deals with the pruning of decision trees, and the final introduces the
idea of combining decision trees. The two domains of application used in these

experiments are first described.
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3.1 THE RANGE DATABASE

The ARIS database is a continental-scale geographic information system devel-
oped for land use planners (Walker, Cocks, and Young, 1985). It consists of
objects, each recording information about an approximately 700 square kilome-
tre rectangular region. Australia divides into 11,109 regions, 8413 of which are
in the rangeland areas of Australia. These rangeland regions form the Range
database as used in the following experiments. For each object, values of some
40 attributes are maintained, including the dominant soil type, the type of veg-

etation, the distance to the nearest seaport, and a number of moisture indices.

3.1.1 Constructing a Linear Model

The Range database has been used for predicting the viability of the pastoral
use of land (sheep or cattle grazing) in the Australian rangelands (Cocks, Young,
and Walker, 1986). A linear model was constructed based upon 106 represen-
tative objects especially chosen from the Range database. The objects in this
training set, collectively referred to as the T106 training set, were classified by

an experienced agricultural scientist (the domain expert).

The domain expert initially chose as the training set 80 regions known
well to him. They were selected so that the training set contained examples
of a range of viability ratings. In order to ensure that the training set was
representative, an exercise was carried out whereby the whole of the Range
database was divided into 15 groups, each group sharing common features.
Changes were then made to the membership of the training set in order to
obtain approximately the same proportion of objects in each of the 15 groups
in both the training set and the Range database. This augmented training set
of 106 regions 1s the T106 training set.

Three primary attributes were devised by the domain expert to be used in
the construction of the model: Return is the expected annual gross revenue;
Cost is the expected annual total costs; and Variability is an indicator of the

variability in the number of stock carried from year to year (Cocks, Young, and
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Walker, 1986). The viability rating was expressed as a linear combination of

these attributes:
Viability = ag + a1 Return + a3 Cost + azVariability.

These primary attributes were themselves expressed as linear combinations of

other data attributes available in the database.

The expert provided values for the viability rating (a value between 1 and
100) and for each of the three primary attributes for each object in the T106
training set. A regression was carried out in order to determine the values of
the coefficients of the above linear equation. The expert then had the oppor-
tunity to adjust those of his original values, both the viability rating and the
three primary attributes, which he felt needed adjustment, after which another
regression was carried out. The model was thus refined until it gave predictions
for viability which corresponded (with 88% agreement) to the expert’s opinion
for all the objects in the training set. The model was then applied to the rest
of the database to provide predictions for the grazing viability of each region
in the Range database. These predictions were found to be acceptable to the

domain expert.

Constructing a model using linear regression relies upon a number of as-
sumptions, including the assumptions of ordered and continuous data. Data
containing integer attributes and ordered categorical attributes are suitable but
unordered categorical attributes are not. A further restriction on the use of lin-
ear modeling is the assumption of a continuous relationship between the order of
each attribute and the decisions being made. Discontinuities in this relationship

produce misleading results.

Decision tree induction provides an alternative approach to building mod-
els. In general, decision tree induction can be applied to less structured data
than regression can. Decision trees can form models from integer and ordered

categorical data, as regression can, in addition to unordered categorical data.
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Also, decision tree induction does not require the assumption of a continuous re-
lationship between attributes and decisions. In this sense, decision trees provide

a richer representational paradigm than that afforded by linear regressions.

Decision tree induction takes advantage of continuity properties for appro-
priate data types (e.g., integers). Decision tree induction algorithms typically
choose a point between represented values of an integer attribute when such an

attribute is chosen by the selection criterion.

For the experiments described here the predictions of viability (i.e., the
decisions) of the linear model (referred to as just the Model) form the basis
on which decisions made by the induced decision trees are judged. The same
training set, T106, 1s used for inducing decision trees in the experiments. The
experiments illustrate the ability of decision tree induction to accurately capture

the structure of this data.

This training set records values for the attributes selected by the expert as
being relevant to the problem of predicting grazing viability. These are the pre-
dominant soil type (Soil), the form of the upper and lower stratum vegetation
(UVeg and LVeg respectively), the distance in kilometres to the nearest seaport
(DPort), and three moisture indicators: the average weekly moisture index for
the wettest consecutive 13 weeks of the year (AWMIH); the average weekly
moisture index from November to April inclusive, covering the Australian sum-
mer (AWMIS); and the average weekly moisture index from May to October
inclusive, covering the Australian winter (AWMIW). The attributes Soil, UVeg,
and LVeg are categorical attributes, with the symbolic categories replaced by
numeric values. In the database the Soil attribute has 30 possible values, UVeg
and LVeg have 50 and 41 possible values respectively. The moisture indicators
take integer values in the range 0 to 100. The distance, regarded as an integer,
ranges up to approximately 1500 kilometres. Thus, both categorical and integer

attributes are represented.

Because of the possibly misleading accuracy implied when using real num-

bers for the viability ratings (as obtained from the Model), 4 decision classes
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(corresponding to ranges of viability) have been used in the following experi-
ments. The expert had the freedom to assign a value between 1 and 100 to the
decision attribute of each object, and the resulting Model assigned values rang-
ing from -8.1 to 90.3. For our purposes, the decisions are simply partitioned into
the 4 decision classes of Very Low (abbreviated as VLow), Low, Medium, and
High, using ranges supplied by the domain expert as given below. Agreement
between the Model and a decision tree refers to agreement within these classes.
-8.1-14.9 = VLow 30-49.9 = Medium
15.0-29.9 = Low 50-90.3 = High

3.1.2 The T106 Training Set

The actual composition of the objects in the T106 training set is summarised

below.

The training set exhibits a common deficiency of small training sets com-
prised of categorical attributes having large ranges of values: incompleteness in
the various attribute values. The training set contains examples of only 9 of
the 30 possible values for Soil, for example. There are only 17 of the possible
50 values for UVeg represented in T106, and only 15 of the possible 41 values
for LVeg. As a consequence, the coverage of a resulting decision tree must be
adversely affected. Integer attributes do not suffer from this anomaly, due to a
known relationship between the values of such attributes. The branching associ-
ated with integer attributes are binary splits, covering all possible values of the
attribute. Nevertheless, the values for DPort range from 121 km to 1225 km,
there being 99 distinct values. AWMIH ranges from 9 to 95, with 46 distinct
values in this range. Similarly the AWMIS attribute ranges from 8 to 83 with
30 distinct values, and AWMIW ranges from 4 to 43, with 25 distinct values.
The decision associated with each object, indicating the grazing viability for
the corresponding region, is represented by 14 objects classified as VLow, 16 as

Low, 40 as Medium and 36 as High.
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3.1.3 Constructing A Decision Tree: T106DC

A decision tree induction algorithm using the information-theoretic cost func-
tion was applied to the T106 training set. The values of the cost function,
E(A), associated with each of the attributes when choosing the initial root of
the decision tree 1s given for illustration in Table 3.1. Note that the value of
E(A) for the integer attributes is the best obtainable by any binary split on
the integers. For these best binary splits, the split point is also given in the ta-
ble. Split points for categorical attributes correspond to each of the individual

values of that attribute.

Attribute Cost E(A) Split Point
Soil 62.94

UVeg 68.62

IVeg 77.69

DPort 102.80 925
AWMIH 116.24 20
AWMIS 119.83 31
AWMIW 105.62 11

TABLE 3.1: Values for E(A), the cost function, for each
of the attributes in the T106 training set, together with the
corresponding mid-point split for the integer attributes. Soil,
having the minimum cost, will be chosen as the root of the

decision tree.

The complete decision tree constructed is shown in Figure 3.1. The at-
tribute Soil, having the minimum value of E(A), labels the root of the decision
tree. There are 9 non-trivial branches from this root; the branches labelled with
2 and 12 have been combined as they lead to the same sub-tree. Each branch
corresponds to one of the 9 values for the Soil attribute as found in the T106

training set. For those values of Soil which do not appear in T106 an implicit
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Soil —— Medium
9 1,7,9,12,18 . 18
—_ LVeg — Medium
2,22 .6
— Hwigh
5 <23 . 3
— AWMIW —> Medium
223 .3
— tg
15 <783 1
— DPort — High
>783 . 4
_5—3) Medium
_12 UVeg —’—) VLO‘LUS
17 %’1 Low
—4  AwMIS < High?22
>31 .
—_— Medium
19 3 . 4
—_ UVeg —4—) Medium
— Lo‘w5
24 <1018 6
- DPort — Low
>1018 4,16 5
T— UVeg —)8 V Low
26 9 — Lcr'w1
- UVeg —3—) VL(:r'w1
— Medium2

FIGURE 3.1: Decision tree T106DC.

branch leads to a sub-tree consisting of just the leaf node Null, indicating no

decision.

Each leaf node of the decision tree is labelled with a decision and a super-
script indicating the number of training set objects corresponding to the leaf
node. For example, there are 3 objects in the T106 training set which have a

value of 2 or 12 for the Soil attribute, each of which has an associated decision

of Medium.

Each path through the decision tree to a leaf node corresponds to an If-
Then type rule, and is readily convertible to this form for use in a rule-based

system. An example of such a rule is:

If Soil=24 and DPort>1018 and UVeg € {4, 16},
Then Class = VLow (5 examples)

The decision tree so constructed, referred to as T106DC, can now be applied
to all of the objects in the Range database. For each object, the application of
the decision tree begins from the root node. A value for the attribute labelling
the root node is obtained from the given object. The branch corresponding to
this value is traversed, leading to another node. If this node is a leaf node, then

the decision which labels this node results. Otherwise, the process is repeated,
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Agree Mild Moderate Strong
4237 (T1.5%) | 1581 (26.7%) | 106 (1.8%) 0

TABLE 3.2: A comparison of the decisions assigned to ob-
jects in the Range database by the T106DC decision tree and
the Model. The Model and T106DC agree, or at worst mildly

disagree in 98.2% of the cases in the database. The percentages
exclude those objects not covered by T106DC.

with the current node acting as the new root node, until a leaf node 1s reached,
or until there is no branch corresponding to the particular attribute value. A

decision of Null is made in the latter case.

T106DC is able to make a decision for only 5924 (or 70.4%) of the objects
in the Range database (i.e., it has a coverage of 70.4%). The inability of this
decision tree to cover all objects results from the absence of objects in the

training set with particular values for the categorical attributes, as noted above.

A comparison of the decisions produced by the Model and T106DC 1s sumn-
marised in Table 3.2—it is observed that the decision tree agrees with the Model
on 71.5% of the cases (excluding those objects not covered by T106DC). To as-
sist in identifying the degree to which a decision tree and the Model disagree,
three degrees of disagreement are introduced. With the ordering on the deci-
sions being VLow < Low < Medium < High, two decisions for one object
mildly disagree if the two decisions are neighbours in this ordering. A mod-
erate disagreement occurs when the two decisions are one class apart, and a
strong disagreement occurs when the two decisions are two classes apart (i.e.,
VLow and High). From Table 3.2 it can be seen that the Model and T106DC
agree or only mildly disagree on 98.2% of the objects covered. This is quite a
satisfactory result. As a practical application, decisions from this decision tree

could be used to identify regions which should be considered for grazing.
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3.2 THE CREDIT DATABASE

To gain a measure of the generality of the observations from the experiments
which follow, each experiment is repeated using data drawn from a very dif-
ferent domain. The Credit database contains 602 records, each containing the
information supplied by a person when applying for a loan for the purchase of
a motor vehicle. Associated with each record is the decision made by a credit

expert. This data has been supplied by an Australian financial institution.

The Credit data is more representative of the type of data actually available
for induction. There is no clear underlying linear model as there was for the
Range data. Since trees built from the Credit data are modelling the real world
in a stronger sense than was the case for the Range data, we can expect more

difficulty in obtaining high levels of accuracy.

For each applicant, five relevant items are recorded: The type of motor
vehicle to be purchased (CarType); the applicant’s occupation (Occup); the
cash price of the purchase (CashPr); the amount the purchaser is willing to
place as a deposit on the motor vehicle (CashDp); and the age of the applicant
(Age). CarType and Occup are categorical attributes, having 6 and 9 distinct
values respectively. CashPr is an integer ranging from 1450 to 65,000, CashDp
1s an integer ranging from 0 to 16,000, and Age is an integer ranging from 18

to 69. The decision attribute is a simple yes/no valued attribute.

For the purposes of the experiments presented here, random samplings of
the Credit database have been generated, and used as training sets. These
training sets range in size from 50 to 150. Reference will be made, for example,
to the Credit 100a training set, which is one of the training sets containing 100
objects. Other training sets of size 100 are 100b and 100c. In all, 12 training
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WD Manager
CarType — Occup — Yes
Trades
— Yes
Labourer
— No
Coupe Manager
— Occup — No
Sales
— Yes
M 10,272
Se—dc)ln Occup aﬂger‘ CashPr <$——’) No
>$10,272
- — Yes
Trades
—_— No
Sales
—_— No
Clerk <$23,617 <49
— CashPr —_ Age — No
>49
—_— Yes
>$23,617
- — Yes
Labourer <$13,631 <$9,743
— CashPr — CashPr — o
>$9,743
— es
>$13,631
- — No
Other
— No
Utility Trades
— Occup —_ Yes
Labourer
—_— No
Other
—_— No
Van <$20,012
— CashPr —_ No
>$20,012
- — Yes
Wagon <$9,666
— CashPr — No
>$9,666
- — Yes

FIGURE 3.2: Decision tree 050aDC, generated from the
Credit database.

sets were used: 050a, 050b, 050c, 100a, 100b, 100c, 125a, 125b, 125¢, 150a,
150b, and 150c.

Decisions of Yes, No, or Null will be made when applying a Credit decision
tree to the Credit database. Comparisons between the decisions produced by
the decision tree and the actual decision made will thus consider only agreement

and disagreement.

Figure 3.2 illustrates the type of decision tree induced (in this case, in-
duced from the 050a training set). For example, managers applying for a loan

to purchase a sedan will only have the loan approved if the sedan is a good



§3.2 Experiments in Induction 71

investment, as indicated by the cash price of the vehicle. Other interesting
rules include the fact that sales persons purchasing a coupe will receive a loan,
whereas if the sales person was to purchase a sedan, then the loan would be
declined. The performance of this decision tree is measured as 87.9% coverage

and 60.7% agreement.

For brevity, other Credit decision trees will not be illustrated. It is the
performance of the decision trees, as measured by their coverage and accuracy,

that is used as the criteria for assessment.
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3.3 THE SELECTION CRITERION

The cost function (or selection criterion) is at the heart of a decision tree induc-
tion algorithm. Properties of the cost function concerning precision and bias
are considered first. Identification of these properties and the supporting ex-
perimentation presented here leads to a better understanding of the behaviour

of the induction algorithm.

3.3.1 Precision of the Cost Function

In using a particular cost function there is an expectation that the “best” choice
will be made in deciding between alternative partitions of the training set. That
18, a good cost function should have the property that it always makes the best
choice. Whilst “best choice” is difficult to define, for our purposes this will be
measured by how well the resulting decision tree models the domain data, in

terms of coverage and accuracy.

If a cost function can be relied upon then overriding it with some other
choice should lead to decision trees with a performance no better than, and in

general worse than that of the original decision tree.

This hypothesis is first tested in the case of the Range data. In building
the decision tree T106DC, the attribute Soil, being chosen to label the root
node, has a cost associated with it of 62.94. The attribute UVeg has a cost
of 68.62, making it a close second choice (see Table 3.1). The attribute UVeg
was used instead of Soil in constructing a new decision tree: T106DU. Choices
for all nodes other than this root node were made by the cost function. The
application of this resulting decision tree to the Range database is summarised

in Table 3.3. The decisions made by this decision tree are considerably worse
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T106DU  c.f. T106DC
Agreement: 58.5% —635
Mild Disagreement: 34.0% +515
Moderate Disagreement: 6.5% +297
Strong Disagreement: 1.0% +58
Coverage: 73.2% 4235

TABLE 3.3: The decisions provided by the T106DU decision
tree are compared to those given by the Model, and then to the
performance of T106DC.

than those made by T106DC, with a large decrease in agreement, and a large
increase in disagreement.

Further experiments, replacing the root node of the decision tree with the
third and fourth best choices, according to the cost function, lead to similarly

poorer decision trees.

Repeated experimentation with the Credit data demonstrates similar be-
haviour. Training sets 050c, 125b, 125¢, and 150b, for example, produced deci-
sion trees with poorer coverage and accuracy when the second best attribute was
used as the choice for the root node. However, a number of other experiments
with the Credit data (for example, 100b and 125a) produced decision trees of
the same or slightly better performance when the second best attribute was
used for the root node. The overall trend indicates that the choice of attribute

made by the cost function is a good choice.

These results confirm that the choice made by the information-theoretic
cost function may not always be the best. However, overriding the cost func-
tion can lead to decision trees with poorer performance or at best with small

improvements.

3.3.2 Indeterminancy of the Selection Criterion

A second desirable property of a selection criterion is that it always a selec-
tion. It is inevitable though that a selection criteria based upon a numeric cost

function may give rise to equal minimum costs, resulting in indecision. This is
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Experiment Coverage Agreement | Experiment Coverage Agreement
050aDC 87.9 60.7 125aDC 91.9 66.9
050aDU 96.5 57.0 125aDU 92.2 67.4
050bDC 91.5 959.2 125bDC 95.7 63.9
050bDU 92.9 59.2 125bDU 94.4 62.0
050cDC 97.3 59.6 125¢DC 92.2 64.0
050cDU 93.5 57.0 125¢DU 89.2 62.8
100aDC 94.2 62.6 150aDC 96.7 64.4
100aDU 97.8 61.5 150aDU 94.5 66.6
100bDC 92.5 66.6 150bDC 97.7 66.5
100bDU 92.5 66.6 150bDU 97.2 62.6
100cDC 98.3 62.5 150¢DC 96.5 68.8
100cDU 96.3 62.9 150¢DU 97.7 68.2

TABLE 3.4: The Credit experiments further illustrate the

trend that the chosen attribute is usually the better choice.

This is not always true though, as in the case of the 125a

decision trees.
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confirmed in the case of the information-theoretic cost function where, in con-

structing T106DC, a number of attributes tied exactly for the minimum cost.

Table 3.5 illustrates an occasion where 5 of the attributes under consideration

were tied. In constructing decision trees from the Credit data, ties for best

attribute were observed on each application of the induction algorithm to the

various training sets. A selection criterion should have the property that when

ties occur, any choice will lead to an equally good decision tree.

An arbitrary choice from amongst those partitions with equal minimum

cost can be made. For the purposes of the following experiments, the choice

will be based upon a ordering of the attributes. Two orderings are introduced,
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Attribute Cost E(A) Split Point
UVeg 0.00

IVeg 0.00

DPort 0.00 766
AWMIH 0.00 27
AWMIS 7.21 9
AWMIW 0.00 20

TABLE 3.5: An example of a minimum cost conflict arising
during the construction of the T106DC decision tree. The cost
function appears to be indicating that any one of the five zero-
cost attributes could be chosen to produce an equally good

decision tree.
one listing categorical attributes before integer attributes, and the other listing
integer attributes before categorical attributes.

By choosing an integer attribute over a categorical attribute it is expected
that the coverage of the resulting decision tree will increase. A split on an
integer attribute will account for all possible values of that attribute, whilst
a split on a categorical attribute will only account for those attribute values
found in the current training set. The ordering within the integer attributes,

and within the categorical attributes, remains arbitrary.

In building decision tree T106DC, an attribute ordering of Soil, UVeg, LVeg,
DPort, AWMIH, AWMIS, and then AWMIW, was used, giving preference to
categorical attributes. A new decision tree, T106DI, can be constructed by al-
ways choosing integer attributes in preference to categorical attributes whenever
their costs are the same. A preference ordering of DPort, AWMIH, AWMIS,
AWMIW, Soil, UVeg, and then LVeg can be used.

T106DI, like T106DC, has Soil as the root node, as there is no other at-
tribute with the same (minimum) cost. The final tree differs from T106DC in
only 3 of the 9 branches emanating from the root (the starred (*) branches
of Figure 3.3). Of these, 2 represent changes of choice from the categorical
attribute UVeg to the integer attribute DPort, and the other from UVeg to
AWMIH.
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[SV]
—
[\V]

Soil 2 Medium3
9 1,7,9,12,18 . 18
—_— LVeg — Medium
2,22 .5
— Hzigh
5 <23 . 3
— AWMIW — Medium
>23 . .3
— High
15 <783 . .5
— DPort — Hzigh
>783 . 4
16 _—7—6)6 Medium
—_— *DPort <——) Low4
>766 8
— V Low
17 <31 . .99
—_ AWMIS — High
>31 . 6
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19 <28 . 4
— *AWMIH — Medium
>28 5
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24 <1018 6
—_ DPort — Low
>1018 4,16 5
T UVeg ? V Low
—_ Lo‘w1
26 <635 . 2
—_— *DPort — Medium
>635 1
— V Low

FIGURE 3.3: The decision tree T106DI constructed by
favouring integer attributes over categorical attributes. The
differences from T106DC are identified with a *, where categor-
ical attributes are replaced by apparently equally good integer

attributes.

Table 3.6 presents a comparison of the decisions made by T106DI with those
made by the Model and T106DC. The coverage of T106DI has increased by
almost 20% over the coverage of T106DC due to the preference given to integer
attributes. The decisions made by T106DI for these extra objects, though,
mostly disagree with the decisions made by the Model. Of the 1164 extra objects
covered, only 358 (30.8%) are in agreement with the Model. Nevertheless, there
are still no strong disagreements, and only 42 new moderate disagreements.

The combined agreement /mild disagreement accounts for 97.9% of the decisions

made by T106DI, comparable to T106DC.

The Credit experiments produce results which indicate that when inte-
ger attributes are chosen over categorical attributes, the coverage increases (as
demonstrated in all but 2 cases—100c and 150c—where there is no change in
coverage). Also, the accuracy of the decisions produced by the resulting decision

trees has decreased, although in most cases only marginally. Refer to Table 3.7.
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T106DI c.f. T106DC
Agreement: 64.8% +358
Mild Disagreement: 33.1% +764
Moderate Disagreement: 2.1% +42
Coverage: 84.3% +1164

TABLE 3.6: The decisions made by T106DI are compared
to those made by the Model. The first column details the per-
formance of the decision tree, compared to the Model, whilst
the second column indicates the changes in the actual cover-
age and decisions made from T106DC. Thus, whilst the actual
agreement is now 64.8% of the coverage, the actual number

of objects with agreeing decisions has increased by 358 over

T106DC.

Experiment Coverage Agreement | Experiment Coverage Agreement
050aDC 87.9 60.7 125aDC 91.9 66.9
050aDI 94.4 56.3 125aDI 93.7 65.8
050bDC 91.5 55.2 125bDC 95.7 63.9
050bDI 97.7 56.3 125bDI 96.7 62.2
050c¢DC 97.3 59.6 125¢DC 92.2 64.0
050cDI 99.3 59.2 125¢DI 93.4 63.9
100aDC 94.2 62.6 150aDC 96.7 64.4
100aDI 98.0 62.4 150aDI 98.3 65.7
100bDC 92.5 66.6 150bDC 97.7 66.5
100bDI 95.7 65.6 150bDI 97.8 65.4
100cDC 98.3 62.5 150cDC 96.5 68.8
100e¢DI 98.3 62.0 150cDI 96.5 68.0

TABLE 3.7: The Credit experiments support the expecta-

tion that choosing integer attributes over categorical attributes,
for equal costs, results in decision trees with greater coverage.
Accuracy is less affected in the case of the Credit experiments

than it was in the case of the Range experiment.

77
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Thus, where the cost function cannot choose between partitions, arbitrary
choices can lead to decision trees with varied performances. Further, choosing
integer attributes over categorical attributes generally results in a decision tree
with greater coverage, but often with a decrease in the accuracy of the decisions

made.

3.3.3 Bias Against Integer Attributes

A selection criterion should be fair in its selection of an attribute, with no arbi-
trary biases. However, a single cost function is typically applied to all attributes,
regardless of whether they are categorical or integer attributes and regardless of
the number of possible values associated with a categorical attribute. However,
categorical and integer attributes are dealt with in quite different ways by the
information-theoretic cost function. For integer attributes, only binary parti-
tions are ever considered, whereas for categorical attributes, n-ary partitions
are considered (with n generally greater than 2 in the data used here). Quinlan
(1986a, page 100) has shown that the cost function favours partitions containing
many cells—there is a strong bias against integer attributes. Quinlan (1985)
deals with this bias by way of a Gain Ratio Criteria as described in Chapter 2

above.

The experiments described below confirm this bias in the cost function and
further considers an empirically based alternative solution to this problem. This
approach introduces the idea of treating integer attributes as if they were multi-
valued categorical attributes (referred to here as pseudo-categorical attributes).
This approach arose from the observation that in the Range training set the
number of distinct values for particular integer attributes was of the order of the
number of distinct values for the various categorical attributes. Thus, treating

them as categorical will affect the bias.

Clustering or gap finding techniques can be used to discover appropriate
subranges of integer values to use in categorising an integer attribute. Such

methods, whilst attractive, require pre-processing of the data, and typically
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work best with larger data sets. With the smaller data sets used in these
experiments (typical of many real-world applications), an alternative approach
was employed. The method developed here considers the distinct values of an
integer attribute, as found in the training set, as the categories. The aim of the
experiments presented below is to consider the value of this novel approach in

handling the bias of the cost function.

3.3.3.1 Aa: Categorising Integer Attributes

The coverage of the resulting decision trees should decrease when integer at-
tributes are treated as categorical—whenever a pseudo-categorical attribute ap-
pears in the tree, only a (possibly small) subset of all the possible values will
be represented there. If the training set is representative, and the range of in-
teger values is small (such as 0 to 100), then we would expect that only the less
frequent values will be missing. Given these observations, an integer attribute
should only be considered as a pseudo-categorical attribute when the number
of distinct values of that attribute occurring in the training set is significantly
less than the size of the training set. Such a restriction avoids decision trees
which have large branching factors—having a (non-Null) branch for each of the

possible values of the attribute.

The three AW attributes of the Range database can be treated as pseudo-
categorical: attribute AWMIH has 46 distinct values, AWMIS has 30, and
AWMIW has 25, in a training set of 106 objects. The integer attribute DPort

is ruled out since it has 99 distinct values.

Decision tree T106Aa was constructed under such a scenario using the cost
function for the choice of attribute at each node. An ordering on the attributes
of Soil, UVeg, LVeg, AWMIH, AWMIS, AWMIW, and then DPort was used to
remove ambiguity when ties for the minimum value of E(A) arose. This order-
ing is the same as that used for T106DC, with the three new pseudo-categorical
attributes moved ahead of DPort to maintain the bias towards categorical at-

tributes, for comparison with T106DC.
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FIGURE 3.4: Decision tree T106Aa, constructed by inter-

preting integer attributes as categorical attributes.

The resulting decision tree, illustrated in Figure 3.4, has a root node la-

belled AWMIW, having a cost of 59.75. This is considerably smaller than the
cost of 105.62 computed for AWMIW as an integer attribute in T106DC. For

comparison, all the values for the costs computed in choosing the initial root

node of the T106Aa decision tree are given in Table 3.8. The costs now as-

sociated with AWMIW and AWMIH are lower than the cost associated with

Soil.

Applying T106Aa to the Range database results, as expected, in a dra-

matically reduced coverage of only 2963 objects (35.2%). Of this coverage, the
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Attribute Cost E(A) Split Point
Soil 62.94

UVeg 68.62

IVeg 77.69

AWMIH 60.91

AWMIS 82.62

AWMIW 59.75

DPort 102.80 925

TABLE 3.8: Values for E(A), the cost function, for each of
the attributes in the T106 training set with the AW attributes
regarded as categorical rather than integer. AWMIW has the

minimum cost and is chosen as the root of the T106Aa decision

tree.
T106Aa c.f. T106DC
Agreement:  48.4% —2803
Mild Disagreement: 30.6% —673
Moderate Disagreement: 18.6% +446
Strong Disagreement: 2.3% +69
Coverage: 35.2% —2961

TABLE 3.9: The decisions provided by T106Aa are com-
pared to those given by the Model, and then to the performance
of T106DC.

ratio of agreement to disagreement with the Model is approximately 1:1. An
analysis of the disagreements provides a little more encouragement. Of the
three degrees of disagreement, 59% are mild (the Model making a decision of
High and T106Aa a decision of Medium), whilst 36% are moderate (Model de-
ciding High, T106Aa deciding Low), and only 5% are strong (Model deciding
High, T106Aa deciding VLow). The combined agreement/mild disagreement

accounts for almost 80% of the coverage.

Results from the Credit experiments agree with these observations. For
these experiments only the attribute Age was considered as a pseudo-categorical
attribute (both CashPr and CashDp have a large range of values). In all cases,
the coverage has decreased, often quite dramatically (as in, for example, 050c
where the coverage drops from 97.3% to 68.9%). Agreement is not so dramati-
cally affected as it was for T106Aa. In half of the Credit experiments, percentage
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Experiment Coverage Agreement | Experiment Coverage Agreement
050aDC 87.9 60.7 125aDC 91.9 66.9
050aAa 71.9 60.7 125aAa 81.7 64.8
050bDC 91.5 50.2 125bDC 95.7 63.9
050bAa 64.3 61.0 125bAa 80.4 65.1
050¢DC 97.3 59.6 125¢DC 92.2 64.0
050cAa 68.9 60.2 125cAa 87.9 61.4
100aDC 94.2 62.6 150aDC 96.7 64.4
100aAa 75.1 61.9 150aAa 80.7 67.3
100bDC 92.5 66.6 150bDC 97.7 66.5
100bAa 69.9 62.5 150bAa 80.1 69.3
100¢DC 98.3 62.5 150¢DC 96.5 68.8
100cAa 81.7 61.4 150cAa 78.1 67.7

TABLE 3.10: The Credit experiments illustrate the dra-
matic affect upon the coverage of the decision trees when an
integer attribute is treated as categorical. Accuracy has not

suffered so much.

agreement has decreased, the largest decrease being recorded for 100bA (from
66.6% to 62.5%). In a number of the experiments the percentage agreement has
in fact increased, with 050b being an extreme example (from 55.2% to 61.0%).
Refer to Table 3.10.

Thus, coverage and accuracy can be considerably affected by introducing
pseudo-categorical attributes. Coverage in particular is dramatically reduced,
as expected, with a general trend being demonstrated towards less accuracy

from the resulting trees.

3.3.3.2 Ab: Growing Integer Branches

Treating an integer attribute as a multi-valued categorical attribute demon-

strably decreases the coverage of the resulting decision tree—an undesirable
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T106Ab c.f. T106Aa
Agreement: 47.3% 4783
Mild Disagreement:  30.4% +519
Moderate Disagreement:  20.4% 4403
Strong Disagreement: 2.0% +23
Coverage: 55.8% +1728

TABLE 3.11: The decisions provided by T106Ab are com-
pared to those given by the Model, and then to the performance
of T106Aa.

consequence. However, a simple remedy is to now introduce the concept of
subranges of attribute values, by way of growing the range of values associated
with the branches of the decision tree.

Subranges are grown by defining a region surrounding the value labelling
the branches. Mid-points will be used for this purpose: given two branches,
one labelled with m and the other with n, where m < n and there being no
other branch labelled with / such that m < ! < n, then compute the mid-point
as p = (m + n)/2, and place an upper bound of p — 1 on the m branch, and a
lower bound of p on the n branch. The branch labelled with the smallest value
of the attribute is extended to cover all values down to the smallest possible
value of the attribute. Similarly for the branch labelled with the largest value.
Such an approach will restore the coverage of the decision tree. Its affect upon

the accuracy of the decision tree is to be scrutinised.

As an example, the process of “growing” the set of values associated with
particular branches in the decision tree can be applied to the root node of
T106Aa (Figure 3.4). Single AWMIW values are grown to encompass ranges
of values so that, for example, AWMIW <4 leads to a decision of Medium, and
AWMIW in the range 34-36 leads to a decision of Low. The resulting decision
tree 1s referred to as T106AD.

This tree indeed has greater coverage than T106Aa. The extra decisions
made, though, are not particularly accurate, with relatively large increases in all

categories of agreement and disagreement (refer to Table 3.11). However, since
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T106Ac c.f. T106Ab
Agreement: 46.8% +353
Mild Disagreement: 31.9% +322
Moderate Disagreement: 19.1% +94
Strong Disagreement: 2.2% +31
Coverage: 65.3% 4800

TABLE 3.12: The decisions provided by the T106Ac deci-
sion tree are compared to those given by the Model, and then
with the performance of T106Ab, demonstrating how growing

the pseudo-categorical branches can lead to increased perfor-
mance.
percentage agreement has changed little from that of T106Aa, the increased

coverage leads to the observation of an overall improvement in performance.

Other similar generalisations are possible. For example, the sub-tree in
T106Aa with AWMIW=6 and Soil=24 is another case. The root of this sub-
tree is labelled with AWMIH, and has two branches: one labelled with “14,15”
leading to VLow; and the other labelled with “56,59”and leading to Low. A
binary split, with a split point of 35, seems appropriate.

Another obvious candidate for growth in the decision tree is the sub-tree
on the path AWMIW=9. If the AWMIS=10 branch of this sub-tree is ignored,
then a binary split can be made with a split point of 17. Thence, for AWMIS
less than 17, the decision is VLow, and for AWMIS greater than or equal to
17 the decision i1s Medium, with an exception when AWMIS=10, for which a
decision of either Low or VLow will be made, depending upon the value of
UVeg.

With these modifications to T106Aa, including those made in T106Ab,
decision tree T106Ac is built. The coverage of the Range database obtained by
the decision tree significantly improves upon that of T106Ab (Table 3.12). The
accuracy, though, still lags behind that of T106DC.
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Experiment Coverage Agreement | Experiment Coverage Agreement
050aAa 71.9 60.7 125aAa 81.7 64.8
050aAc 88.7 59.6 125aAc 86.2 64.4
050bAa 64.3 61.0 125bAa 80.4 65.1
050bAc 87.7 59.5 125bAc 85.5 65.0
050cAa 68.9 60.2 125cAa 87.9 61.4
050cAc 87.9 57.5 125cAc 88.9 61.9
100aAa 75.1 61.9 150aAa 80.7 67.3
100aAc 81.2 62.2 150aAc 85.2 66.3
100bAa 69.9 62.5 150bAa 80.1 69.3
100bAc 79.1 62.4 150bAc 81.9 69.8
100cAa 81.7 61.4 150cAa 78.1 67.7
100cAc 89.7 61.5 150cAc 80.9 67.6

TABLE 3.13: Some of the coverage of the original decision
tree is regained by growing the pseudo-categorical branches.

The “Ac” trees are compared to the “Aa” trees.

Once again, these findings are supported by the Credit experiments (see
Table 3.13). Coverage, when compared to the “Aa” trees, has dramatically in-
creased in 050aAc, 050bAc, and 050cAc, with less dramatic, yet still significant

increases in the others. The percentage agreement has changed very little.

3.3.3.3 Ad: Changing The Root

The relatively poor performance of T106Ac can be attributed to the choice
of AWMIW, a pseudo-categorical attribute, for the root node of the decision
tree. Analysing the cost function in terms of its application to the pseudo-
categorical AWMIW attribute and the categorical Soil attribute, it is seen that
the bias inherent in the cost function has swung from being against AWMIW to
being in favour of AWMIW over Soil. (Soil is an attribute with just 9 distinct

values represented in the training set, compared to 25 for AWMIW). Thus, if
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FIGURE 3.5: Decision tree T106Ad was constructed by
considering the AW integer attributes as pseudo-categorical,

except that the choice for root node is overridden to be the

same as that chosen for T106DC.

Soil remained as the chosen attribute for the root of these trees, as identified

originally, then better trees may result.

The next experiment repeats the process of building a decision tree, with
the AW attributes treated as pseudo-categorical, but selecting Soil as the root
of the tree. All other choices of attributes for the resulting T106Ad decision

tree are based upon the cost function. The resulting decision tree is illustrated

in Figure 3.5.

The performance of the resulting decision tree is indeed markedly improved.
The coverage, being 4577 objects (54% coverage) is significantly better than that
of T106Aa. It also has much greater percentage agreement (67.9%) with the
Model, although it still short of T106DC’s level of performance.

The pseudo-categorical branches associated with the Soil=9, Soil=15, and

Soil=17 branches (Figure 3.5) can now be grown. The resulting decision tree,
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T106Ae c.f. T106DC
Agreement: 71.0% +285
Mild Disagreement: 27.3% +158
Moderate Disagreement: 1.7% +1
Strong Disagreement: 0.0% no change
Coverage: 75.7% +444

TABLE 3.14: The decisions provided by T106Ae are com-
pared to those given by the Model, and then to the performance
of T106DC.

T106Ae, in fact turns out to be almost identical in structure to T106DC. How-
ever, it improves upon T106DC in its coverage (by almost 8% ), without lowering
its accuracy (71% agreement), as summarised in Table 3.14.

A decision tree of greater coverage than T106DC has been produced, with

the extra coverage primarily in agreement with the Model. This decision tree’s

coverage is approaching that of T106DI, whilst maintaining accuracy.

Less conclusive results were obtained from the Credit experiments. Each
of the Credit training sets were used to construct a decision tree, where the
Age attribute was treated as a pseudo-categorical attribute, but with the root
node of the tree being chosen to be the same as that originally chosen in the
first experiments (decision trees 005aDC, 005bDC, etc.). All Age branches were
then grown to cover all possible values of that attribute. Coverage 1s already
quite high for most of the Credit decision trees generated from the original
application of the induction algorithm. In general though the “Ae” trees have
slightly decreased coverage and accuracy, compared to both the original trees,

and the “DI” trees. Refer to Table 3.15.

3.3.4 Summary

The series of experiments described here has illustrated some deficiencies of the
selection criterion using the information-theoretic cost function. Two related
issues were explored: the precision and the bias of the cost function. In in-
ducing the decision tree T106DC it was observed that the costs calculated by

the selection criterion are sometimes very similar. The issue of the precision
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Experiment Coverage Agreement | Experiment Coverage Agreement
050aDC 87.9 60.7 125aDC 91.9 66.9
050aAe 91.7 58.0 125aAe 86.2 64.4
050aDI 94.4 56.3 125aDI 93.7 65.8
050bDC 91.5 50.2 125bDC 95.7 63.9
050bAe 92.7 53.6 125bAe 85.5 65.0
050bDI 97.7 56.3 125bDI 96.7 62.2
050cDC 97.3 59.6 125¢DC 92.2 64.0
050cAe 93.2 60.8 125cAe 92.4 63.3
050c¢DI 99.3 59.2 125¢DI 93.4 63.9
100aDC 94.2 62.6 150aDC 96.7 64.4
100aAe 89.9 60.4 150aAe 95.5 64.7
100aDI 98.0 62.4 150aDI 98.3 65.7
100bDC 92.5 66.6 150bDC 97.7 66.5
100bAe 77.6 63.6 150bAe 96.2 67.2
100bDI 95.7 65.6 150bDI 97.8 65.4
100¢DC 98.3 62.5 150¢DC 96.5 68.8
100cAe 90.2 62.1 150cAe 95.7 64.8
100cDI 98.3 62.0 150c¢DI 96.5 68.0

TABLE 3.15: Coverage has been improved upon by chang-
ing the root node of the tree to that used in the original “DC”
tree. In general, the “Ae” trees have lower coverage and accu-

racy than the “DI” trees, but improve upon the “DC” trees.

of the numbers returned by the cost function was explored by way of choos-
ing the second best attribute as the root node of the decision tree. It was
demonstrated that inferior decision trees could be induced as illustrated with
the “DU” decision trees.

A further observation made was that the cost function is not always capable

of distinguishing between attributes. On many occasions, a set of attributes
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Experiment Description Cover Agree Mild Mod Strong
T106DC Application of the DTIA. 70.4 71.5  26.7 1.8 0.0
T106DU Use second best attribute. 73.2 58.5 34.0 6.5 1.0
T106DI Equally good attributes. 84.3 64.8 33.1 2.1 0.0
T106Aa AW attributes as categorical. 35.2 48.4 30.6 18.6 2.3
T106Ab Growing root branches. 55.8 47.3 304 204 2.0
T106Ac Growing all branches. 65.3 46.8 319 19.1 2.2
T106Ad Categorical attribute as root. 54.4 67.9 29.8 2.3 0.0
T106Ae Growing branches in T106Ad. 75.7 71.0 27.3 1.7 0.0

TABLE 3.16: Summary of results from the Range experi-
ments dealing with the choices of attributes. Each decision tree
is applied to the Range database, and the resulting decisions
are compared to those obtained from the Model—all numbers

are percentages.

having a common, minimum cost, were identified. It was shown that decision

trees differing both in terms of structure and performance can be induced, as
illustrated with the “DI” decision trees.

The strong bias of the cost function against integer attributes was then
identified, and a solution to this problem, turning the integer attributes into
categorical attributes, was suggested (the “Aa” decision trees). For T106Aa,
this resulted in one such integer attribute being chosen as the root node. When
the fact that this attribute was actually continuous was used to then gener-
alise the root (T106Ab), the results were disappointing. However, when other
such generalisations were made in sub-trees (T106Ac) the results improved.
If the original choice for the root node is used (Soil in T106DC), leaving the
rest of the decisions to the cost function, treating the continuous attributes as
pseudo-categorical, the good performance of T106Ad was achieved, although
1t still lacked coverage. Using the technique of growing the pseudo-categorical
branches resulted in a decision tree (T106Ae) having the greater coverage with-
out sacrificing accuracy. Its coverage is intermediate between that of T106DC
and T106DI, with significantly better agreement than T106DI.

The results from the Range experiments are summarised in Table 3.16.

Similar observations are made for the Credit experiments.
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3.4 EXCEPTION SPLIT PRUNING

A second 1mportant concern of decision tree induction is determining just when
to stop the process of partitioning the training set in generating the decision
tree (the dividing and conquering). The basic approach may at first seem quite
reasonable—stop when the objects in the training set have a common value for
the decision attribute. However, a concern arises when a leaf of the resulting
decision tree is associated with very few objects from the training set. Such
a situation may indicate noise in the training set, and, if so, the resulting leaf

node will be a cause of error.

Various techniques have been developed to deal with this situation. Chap-
ter 2 includes descriptions of some of these. A common approach is to fully
develop the decision tree and then to collapse the tree from its leaf nodes under
certain conditions. This is often equivalent to introducing a stopping crite-
rion to inhibit the development of leaf nodes corresponding to minorities in a

training set in the first place.

The experiments presented below explore this type of tree pruning in the
context of the Range and Credit domains. The concept of exception split prun-
ing is introduced. An exception split is identified as one or more decision
values found in a training set being represented by very few objects in that
training set, in comparison to the size of the training set. The approach consid-
ered here for handling exception splits is to reclassify them in agreement with
other objects in the corresponding training set. If these exceptions are due
to noise, then the accuracy of the resulting trees is expected to increase with
their removal. Coverage can also be affected. If the decision tree resulting from
a training set containing an exception split has a categorical node as its root
node, then replacing this tree with a single decision node can result in increased

coverage.

The original decision tree T106DC contains a number of exception splits.

One example is the set of training objects which have Soil=24 and DPort>1018
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(see Figure 3.1). Of the 6 members of this set, 5 have decisions of VLow and
1 of Low. The sub-tree on the latter path, having UVeg as its root, could be
replaced with a leaf node labelled VLow. This introduces a 16.7% error rate
into this branch of the tree, or a 0.94% error rate when applied to the whole of

the T106 training set. The resulting tree is no longer Tr-consistent.

The following experiments deal with pruning to a specific threshold error
rate with respect to the current training set. Pruning to a threshold of 20%
removes those exception splits in which the number of exceptions is no more
than 20% of those objects contained in the current training set. These 20% or
fewer objects will be treated as if they had the same decision value as the other
80% or more objects in the training set. The T106DC and T106DI decision

trees are pruned, as are the “DC” Credit decision trees.

3.4.1 Ce: Pruning with 20% Threshold

This first experiment in pruning treats any training set with at least 80% of the
objects having a single common decision as homogeneous with respect to this
decision. Thus, they are not further divided. The purpose of this experiment

is to empirically determine the utility of pruning.

Decision tree T106Ce results from removing the 20% exception splits from
T106DC. There is only one such exception split, corresponding to the training
set with Soil=24 and DPort>1018. The sub-tree induced from this training set

is replaced with the leaf node VLow.

The results of applying this new decision tree to the whole of the Range
database are presented in Table 3.17, and are compared with T106DC. The
greatest change is the increase in the number of agreements. Of the extra 351
objects now covered as a result of this pruning, more than half agree with the

Model. A better performing decision tree results.

Applying this pruning technique to decision tree T106DI results in very sim-
ilar improvements in overall performance. Decision tree T106Ie has greater cov-

erage with only a minor decrease in the percentage agreement (see Table 3.23).
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T106Ce c.f. T106DC
Agreement: 70.9% +211
Mild Disagreement: 27.4% +137
Moderate Disagreement: 1.7% +3
Strong Disagreement: 0% no change
Coverage: 74.6% +351

TABLE 3.17: The decision tree T106Ce removes excep-
tion splits up to the 20% level. The decisions provided by

the T106Ce decision tree are compared to those given by the
Model, and then to the performance of T106DC.

Experiment Coverage Agreement | Experiment Coverage Agreement
050aDC 87.9 60.7 125aDC 91.9 66.9
050aCe 93.5 59.7 125aCe 94.0 66.8
050bDC 91.5 55.2 125bDC 95.7 63.9
050bCe 93.2 60.2 125bCe 95.7 64.2
050cDC 97.3 59.6 125¢DC 92.2 64.0
050cCe 97.3 64.5 125¢Ce 97.2 64.4
100aDC 94.2 62.6 150aDC 96.7 64.4
100aCe 96.3 61.9 150aCe 98.8 64.0
100bDC 92.5 66.6 150bDC 97.7 66.5
100bCe 92.5 66.8 150bCe 97.7 66.0
100cDC 98.3 62.5 150cDC 96.5 68.8
100cCe 98.3 63.3 150cCe 97.2 66.5

TABLE 3.18: Pruning a decision tree, with a threshold of

20%, improves the performance of the decision tree.

The Credit experiments (Table 3.18) also demonstrate the improvement
gained by pruning decision trees. In all cases, coverage has either increased or
remained constant. The percentage of agreement has primarily been maintained
with this extra coverage, with four cases demonstrating a slight decrease and

two cases demonstrating significant increases in accuracy (050b and 050c).
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T106Cf c.f. T106Ce
Agreement: 69.6% +261
Mild Disagreement: 28.8% +232
Moderate Disagreement: 1.6% no change
Strong Disagreement: 0% no change
Coverage: 80.4% +493

TABLE 3.19: Decision tree T106Cf removes exception splits
up to the 30% level. The decisions provided by the T106Cf
decision tree are compared to those given by the Model, and

then to the performance of the T106Ce decision tree.

3.4.2 Cf: Pruning with 30% Threshold

Further improvements are observed when a 30% threshold is introduced. De-
cision tree T106Cf is the same as T106DC with the 30% exception splits re-
moved. Two further sub-trees of T106Ce are consequently removed. The first
corresponds to the training set with Soil=17, which has a decision of High as-
sociated with 79% of the objects, and the second corresponds to the training
set with Soil=9, which has a decision of Medium associated with 70% of the

objects. This pruning results in a total error rate over the training set of 15.1%.

The coverage of the resulting decision tree has increased (see Table 3.19).
The overall accuracy is maintained, with only a slight drop in the percentage

of agreement, for an almost 15% increase in coverage, compared to T106DC.

The decision tree T106If exhibits a similar pattern, showing an increase in
coverage of over 10% whilst maintaining accuracy. The Credit experiments
underline the appropriateness of pruning, resulting in some quite dramatic
improvements in performance (Table 3.20). In two cases, 100% coverage is
achieved (in one case from an original coverage of 87%), with percentage agree-

ment greater than that obtained with the “DC” trees.

3.4.3 Ch: Retaining Tr-Consistency

The removal of exception splits, as above, assumes that exception splits result
from noise in the training set. The level of noise in a training set is not always

significant. For the case when it is known or believed that the training set is
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Experiment Coverage Agreement | Experiment Coverage Agreement
050aDC 87.9 60.7 125aDC 91.9 66.9
050aCf 100.0 60.8 125aCf 97.2 62.2
050bDC 91.5 50.2 125bDC 95.7 63.9
050bCt 97.7 59.7 125bCf 97.3 61.4
050¢DC 97.3 59.6 125¢DC 92.2 64.0
050cCt 100.0 63.8 125¢Ct 100.0 62.8
100aDC 94.2 62.6 150aDC 96.7 64.4
100aCt 99.5 62.3 150aCt 99.2 59.6
100bDC 92.5 66.6 150bDC 97.7 66.5
100bCf 96.8 66.4 150bCf 97.8 65.7
100¢DC 98.3 62.5 150¢DC 96.5 68.8
100cCt 99.2 63.1 150cCt 97.2 66.0

TABLE 3.20: Pruning a decision tree, with a threshold of
30%, demonstrates further improvements in the performance

of the decision tree.

mostly noise free, a similar approach can be employed. The aim of this approach
is to construct a Tr-consistent decision tree whilst handling exception splits in

a more appropriate manner.

Again consider the Soil=24 and DPort>1018 path through the T106DC
decision tree. The training set associated with this path contains an exception
split, as already shown. Instead of replacing the whole sub-tree emanating
from this node with just a single value (VLow), a binary split is introduced,
with one branch leading to the collection of exception objects. This branch
is labelled with “= 8”7, whilst the other has the label “#£8”, corresponding to
an “otherwise” branch. It is only appropriate, however, to handle categorical
attributes in this way. When an integer attribute is involved, coverage is already

maximal.
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T106Ch c.f. T106DC
Agreement: 70.8% +552
Mild Disagreement:  27.7% +291
Moderate Disagreement: 1.6% +1
Strong Disagreement: 0%  no change
Coverage: 80.4% +844

TABLE 3.21: The decision tree T106Ch removes exception
splits up to the 30% level but retains Tr-consistency. The deci-

sions made by the T106Ch decision tree are compared to those

given by the Model, and then to the performance of T106DC.

By maintaining Tr-consistency it is expected that the resulting decision tree
will maintain, or better still improve upon, the accuracy of the decision tree.
Coverage 1s also expected to increase. These expectations are explored in the
following experiment.

The decision tree T106Ch is built from applying this generalisation tech-
nique to the 30% threshold. The training set corresponding to Soil=17 is
handled no differently from T106DC. The only generalisations introduced in
T106Ch are associated with the path Soil=9 and the path Soil=24, DPort>1018.
Any object in the Range database with Soil=9 and LVeg ¢ {2,522} will be
decided as Medium, rather than just those with LVeg € {1,7,9,12,18}. Like-
wise, any object with Soil=24, DPort>1018, and UVeg#8 will be VLow (refer
to Figure 3.1).

Comparing T106Ch to T106DC (Table 3.21), it is seen that the coverage has
indeed increased over that of T106DC to the same level as that of T106Cf. This
extra coverage is generally in agreement with the Model, and in fact corrects
some of the moderate disagreements which occurred in T106Cf. The resulting
combined agreement and mild disagreement in fact accounts for 98.4% of the

coverage obtained by T106Ch—the best obtained of any decision tree so far.

Both T106Ih (Table 3.23) and the Credit experiments (Table 3.22) confirm
these observations, from which it is concluded that pruning together with main-
taining Tr-consistency can offer significant benefits, especially if noise is known

not to be a problem with the training set.
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Experiment Coverage Agreement | Experiment Coverage Agreement
050aDC 87.9 60.7 125aDC 91.9 66.9
050aCh 100.0 60.5 125aCh 97.2 66.0
050bDC 91.5 50.2 125bDC 95.7 63.9
050bCh 97.7 55.8 125bCh 97.3 63.3
050¢DC 97.3 59.6 125¢DC 92.2 64.0
050cCh 100.0 59.6 125¢Ch 100.0 63.1
100aDC 94.2 62.6 150aDC 96.7 64.4
100aCh 98.0 62.7 150aCh 99.2 64.7
100bDC 92.5 66.6 150bDC 97.7 66.5
100bCh 96.8 66.9 150bCh 97.8 66.4
100¢DC 98.3 62.5 150¢DC 96.5 68.8
100cCh 99.2 62.5 150cCh 97.2 68.7

TABLE 3.22: Pruning a decision tree whilst maintaining its

Tr-consistency is an alternative to previous pruning methods.

3.4.4 Summary

The series of three experiments presented here each confirm that pruning can
improve the performance of a decision tree. Each improves upon the coverage
achieved by the “DC” trees, with only minor decreases, if any at all, to the per-
centage agreement. The two exception split pruning experiments demonstrate
the power of pruning with some quite impressive improvements. However, de-
ciding when to prune and to what level to prune is extremely difficult, and

remalins an art.

Pruning relies upon the assumption that the training data is noisy. A novel,
yet simple approach has been introduced which retains the Tr-consistency of
the resulting decision trees. This approach has also been demonstrated to be

effective in increase coverage, whilst maintaining agreement.
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Table 3.23 summarises the results from this series of experiments as applied
to the Range data. Results from the Credit experiments add support to the

results obtained from the Range experiments.

Experiment Description Cover Agree Mild Mod Strong
T106DC Application of the DTTA. 70.4 71.5  26.7 1.8 0.0
T106Ce 20% Exception splits. 746 709 274 1.7 0.0
T106Cf 30% Exception splits. 80.4 69.6 28.8 1.6 0.0
T106Ch Retaining Tr-consistency. 80.4 70.7 27.8 1.6 0.0
T106DI1 DTIA Favouring Integers. 84.3 64.8 33.1 2.1 0.0
T1061le 20% Exception splits. 88.4 64.6 334 2.0 0.0
T1061f 30% Exception splits. 94.3 63.9 34.2 1.9 0.0
T1061h Retaining Tr-consistency. 94.3 64.9 33.2 1.9 0.0

TABLE 3.23: Summary of Range experiments dealing with
exception splits. The Cover is the percentage of those objects
in the Range database able to be handled by the decision tree.
The Agreement and the three degrees of disagreement are with

respect to the decisions assigned to the objects by the Model.
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3.5 COMBINING DECISION TREES

A deficiency of the decision tree structure becomes apparent when the issue
of missing attribute values arises. If an object does not have a value for the
root attribute of the decision tree, it can never be assigned a decision value.
Suppose that in using T106DC an object to be classified has no value for the
Soil attribute but has a value of 26 for LVeg. The training set shows that all
objects with this value for LVeg have a decision of Low. But this object cannot

be classified by the decision tree because it requires a value for Soil.

Quinlan (1986a) suggests exploring all branches from a node whenever the
assoclated attribute has an unknown value in the object being considered. Each
of these paths will lead to a leaf node eventually, and the leaf node (and therefore
the decision) associated with the largest collection of objects from the training
set is selected. Further work by Quinlan (1987a) has provided a more satisfac-
tory solution to this problem by converting the decision trees into rules, and
then applying statistics to test whether any of the conditions of the rules can

be dropped.

The experiments presented earlier in this chapter suggest an alternative
solution to this problem. This solution is to construct multiple decision trees,
and to then combine them. Such a solution, however, introduces the problem
of dealing with conflicting decisions. FEach of the decision trees constructed
will be Tr-consistent, and the combination of the decision trees is thus also
Tr-consistent. When working on previously unseen objects however, different
decision trees can make different decisions for the one object. Such conflicts
arise whenever an object is similar to two objects of the training set which
have different decisions associated with them, but for which there are no exact
examples contained in the training set. Techniques will be required to deal with

these conflicts.

This approach 1s explored in the following experiments by combining equally

good decision trees; that is, decision trees which result from different choices
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of equally good attributes, according to the cost function. Decision trees are
combined more efficiently by considering each decision tree as a rule set. The
rule set for a decision tree is constructed by simply traversing each path of the
decision tree and recording the attributes and values encountered. These then
form the If-part of a rule, with the Then-part being the decision found at the

leaf node.

3.5.1 C1: Combining Equally Good Trees

When the information-theoretic cost function is applied to the training set con-
taining just those objects with Soil=26, the value of E(A) for each of the at-
tributes UVeg, LVeg, DPort, AWMIH, AWMIS, and AWMIW is 0. UVeg was
the chosen attribute because of the attribute ordering used in constructing

T106DC.

In this experiment, a decision tree is constructed for each of the above 6
choices. These decision trees, treated as rule sets, can then be combined. For
a given object, more than one rule may have its conditions met by the object.
Thus, multiple, and possibly conflicting decisions may arise. The resolution
of these conflicts follows the approach of choosing the decision with the most
support from the training set. (Support is simply measured as the number of
objects in the training set corresponding to the particular path through the
decision tree which lead to the decision obtained, requiring the training set to
be representative of the universe of objects.) If two different decisions have

equal support from the training set, then one is arbitrarily chosen.

By effectively building multiple, equally good, decision trees, the coverage of
the resulting system can be greater than that of the individual trees, especially
when integer attributes are used. What needs to be assessed though 1s the

accuracy of the resulting system.

The rule set T106C1 results from combining 6 equally good decision trees
differing only in the Soil=26 branch. Any object to be classified, having Soil=26,

will have a decision from at least four of the decision trees, corresponding to the
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T106C1  c.f. T106DC
Agreement: 67.9% +203
Mild Disagreement: 29.1% +320
Moderate Disagreement: 3.1% +94
Strong Disagreement: 0%  no change
Coverage: 77.7% +617

TABLE 3.24: TI106C1 is a collection of 6 “equally good”
decision trees. The decisions provided by T106C1 are compared

to those given by the Model, and then to the performance of
T106DC.

four continuous attributes which cover all possible values. The only conflicts
that can occur are between a decision of VLow resulting from one decision tree
and a decision of Medium from another. However, since there are twice as many
objects in the training set corresponding to the Medium decision, Medium is

chosen over VLow when a conflict arises.

As Table 3.24 indicates, T106C1 has a coverage of 77.7%, an improvement
upon the coverage of T106DC, as expected. The percentage agreement has
decreased from the 71.5% of T106DC to 67.9% for T106C1.

3.5.2 C2: Further Combinations

This approach can be applied to other portions of the T106DC decision tree
where sets of equally good attributes arise. The sub-tree of T106DC with
Soil=16 is one such case. From the corresponding training set the 5 attributes
UVeg, LVeg, DPort, AWMIH, and AWMIW each have a value of 0 for E(A).
Five decision trees can be constructed which differ only in the choice of the

attribute at this node.

The rule set T106C2 contains rules which can produce conflicting decisions,
but only between decisions of Low and VLow. The choice when conflict does
arise is not always as simple as it was for T106C1. If one of the rules corre-
sponding to the continuous attributes makes a decision of VLow, then this will
always have a support value of 8 objects in the training set, compared to 4

objects in the training set if Low was the successful decision. However, the two
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T106C2 c.f. T106DC
Agreement:  72.4% +327
Mild Disagreement:  25.9% +51
Moderate Disagreement: 1.7% no change
Strong Disagreement: 0%  no change
Coverage: 74.9% +378

TABLE 3.25: TI106C2 is a collection of 5 “equally good”
decision trees. The decisions of T106C2 are compared to those

from the Model, and then to those of T106DC.

categorical attributes each lead to 3 rules, two concluding a decision of VLow,
with the other resulting in Low. Each has a support value of 4 objects in the
training set. If at least one of the two paths with Soil=16 which leads to V Low
is followed, then the decision of VLow is not disputed. Otherwise, an arbitrary
selection must be made.

The resulting rule set again demonstrates how coverage can be increased

(at least when compared to T106DC), with an improved coverage of 74.9%
(Table 3.25). Whilst its coverage is less than that of T106C1 (and less than

that of T106DI), its accuracy is greater.
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3.6 SUMMARY OF EXPERIMENTS

This chapter has identified desirable properties of decision tree induction and
found, by way of experimentation, that not all hold. The experiments presented
here further illustrate a number of techniques which enhance the decision tree
induction algorithm. The techniques include the categorisation of integer at-
tributes, split-generalisations on such attributes, exception split handling, and
the combining of decision trees. A particular observation made in this chapter
is that a decision tree induction algorithm is capable of producing more than

just a single “best” decision tree from a given training set.

The principal results from the experiments are presented in Table 3.26.
Tables 3.16 and 3.23 provide further summaries of the experiments. Below is a

précis of the experiments.

o The precision of the cost function was explored in the “DU” series of exper-
iments, where the choice of attribute for the root node of the decision tree
was overridden with the second best attribute. The resulting improvement
in coverage is offset by poorer accuracy. Similar results for other choices of
close attributes were obtained. Where it did discriminate, the cost function
was found to be a good discriminator. With the Credit data though, less
marked changes in performance were observed, with some “second best”
choices actually leading to trees with marginally improved coverage and ac-
curacy. In general though, the choice made by the decision tree induction

algorithm can be relied upon.

e Noting that the cost function was not always adequate in discriminating
between attributes, an investigation of “equally good” decision trees was
undertaken. T106DI was constructed by choosing an integer attribute over
a categorical attribute whenever such a choice was available. This pro-
duced a decision tree which was able to cover many more objects from the
Range database than T106DC, but at the cost of accuracy. The increase

in the disagreements though is mostly confined to mild disagreements. The
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Experiment Description Cover Agree Mild Mod Strong
T106DC Application of the DTIA. 70.4 71.5  26.7 1.8 0.0
T106DI1 Favour integer attributes. 84.3 64.8 33.1 2.1 0.0
T106Ae AW as categorical, with generalisation. 75.7 71.0 27.3 1.7 0.0
T106Ch 30% Exception split and Tr-consistent. 80.4 70.8 27.7 1.6 0.0
T106C1 Combine Soil=26. T 679 29.1 3.0 0.0
T106C2 Combine Soil=16. 74.9 72.4 259 1.7 0.0

TABLE 3.26: Summary of decision tree applications, with

comparisons to the Model—all figures are percentages.

observation that “equally good” decision trees have significantly different
performances is made. With preference given to integer attributes, decision
trees with greater coverage but less accuracy generally result, compared to

decision trees induced with preference given to categorical attributes.

e A deficiency of the information theoretic cost function used in many de-
cision tree induction algorithms is that it has a bias toward many-valued
categorical attributes. The T106A series of experiments considered this
problem. A solution was considered whereby integer attributes were re-
garded as categorical. Dramatic decreases in the coverage of the decision
trees were coupled with significant increases in the disagreements. However,
the introduction of a generalisation technique improved the performance—
pseudo-categorical attributes were generalised by growing the range of val-
ues associated with the branches, effectively restoring their “integer” na-

ture.

o Further experiments showed that the choice of a categorical attribute as
the root node of the decision tree, whilst permitting integer attributes (be-
ing treated as categorical) to appear elsewhere in the tree, improved the

coverage and accuracy of the decision tree.

o A decision tree, T106Ae, formed by treating integer attributes as cate-

gorical, but with a categorical attribute as the root of the tree, and then
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generalising, achieved greater coverage and accuracy compared to the orig-
inal decision tree (T106DC). This tree also begins to approach the coverage
obtained by T106DI, whilst maintaining high agreement with the Model.

e Three experiments dealt with the issue of pruning a decision tree. They
showed how the coverage of a decision tree may be increased, with only
minor degradation of the accuracy of the decisions produced, by removing
exception splits. It was further found that retaining the Tr-consistency of

the decision tree whilst employing this approach improved the performance.

e The final two experiments combined a number of equally good decision
trees—in particular, decision trees which differ in only one sub-tree. A
different attribute for the root of the sub-tree was chosen. Whilst both
experiments increased the coverage, one was less accurate than the orig-
inal decision tree, whilst the other was more accurate. The technique of
combining decision trees promises a path to greater coverage and accuracy.
From these preliminary experiments in combining decision trees it is ar-
gued that this approach is an interesting one, worthy of further study and
development. This is the focus of Chapter 4.

These experiments have illustrated a number of uncertainties in using a de-
cision tree induction algorithm. It is important for the user of these algorithms
to be aware of such behaviour. The following chapter builds upon one of these

observations by considering further the idea of combining decision trees.



4 The MIL Algorithm

The experiments presented in Chapter 3 demonstrated variations in the perfor-

mance of multiple decision trees induced from a single training set. Choosing a
single best decision tree is identified as a difficulty with decision tree induction
algorithms. The MIL algorithm is developed in this chapter as an approach
to handling this situation. Rather than choosing between decision trees, the
approach adopted is to combine decision trees. The goal is to improve the

accuracy and coverage of the resulting knowledge structures.

This chapter begins with an introduction to the idea of combining decision
trees. The terminology and a number of properties relating to conflicts which
arise when decision trees are combined are then presented. This is followed by
an example which serves to motivate and illustrate the process of combining
decision trees. A full specification of the MIL algorithm then follows. A series

of experiments then illustrate how MIL can effectively combine decision trees.

Page 105
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4.1 COMBINING RULE SETS

Differences in performance (coverage and accuracy) were observed in the ex-
periments of Chapter 3 where distinct decision trees were induced from a single
training set. This observation is of concern to the knowledge engineer who must
deal with these multiple (alternative) decision trees. A similar observation is
also made by Mingers (1989b), reporting that different selection criteria can
lead to multiple decision trees of similar accuracy. Again, a choice between

alternative decision trees must be made.

This chapter develops a technique for combining decision trees. Rule sets,
rather than decision trees, will be used to describe and implement this approach.
Decision trees can be translated into equivalent sets of rules, representing knowl-
edge in a more expressive and familiar form. A rule set derived from a decision
tree will contain a rule for each leaf node, corresponding to the paths from the

root of the decision tree to that leaf node.

A goal of combining rule sets is to improve performance by taking the best
from the rule sets being combined. The resulting coverage and accuracy will
depend upon the coverage and accuracy of the original rule sets. In terms of
coverage, at best we can expect a combined rule set to have a coverage equal to
that of the union of the coverage of the individual rule sets. In terms of accuracy
the situation is less clear—rules from different rule sets may conclude different
decisions for the same objects. How these conflicting decisions are resolved will

affect accuracy.

Conflict indicates deficiencies in the knowledge base. The MIL algorithm
identifies all conflicting rules, modifies them to remove the potential for conflict,

and then suggests new rules to restore the coverage otherwise lost.

The concept of conflict resolution is not new (Davis and King, 1984). Typ-
ically, in a rule-based system when multiple rules are applicable in a particular
situation, a single rule is chosen, and no conflicting decision are made. Heuris-

tics for choosing a rule have been developed, and include data ordering (which
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uses a rule involving certain attributes in preference to a rule involving other
attributes), generality ordering (where the most specific rule is chosen), and
rule precedence (where a precedence network is used to order the rules). Suwa,
Scott, and Shortliffe (1984) introduce the concept of checking for conflicts in a
rule base and then presenting these to a knowledge engineer for advice. No at-
tempt is made to actually deal with the conflict. More recent work by Li, Barter,
and Yu (1988), for example, has investigated the use of knowledge about the
relationships between the values of an attribute in order to rationalise conflicts
when they actually arise. The approach embodied in the MIL algorithm ad-
dresses conflict by identifying the rules causing the conflict, restricting the rules
to avoid the conflict, and then suggesting new rules to make decisions for those

objects previously resulting in conflict.
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4.2 THE TERMINOLOGY OF CONFLICT

The terminology of conflict presented here builds upon the general terminology

introduced in Chapter 2.

The concept of an object was introduced in Chapter 2 as a description of an
entity. The set of attributes A = {A;,..., Ay} is used to describe an object.
Attributes are either categorical (with a domain consisting of an enumerated
set of values) or integer. A;(0) will denote for the particular object o the value
associated with the attribute A;. The subset of the cartesian product of the
attributes Aq,..., A, corresponding to a particular domain of application will
be denoted as . A decision attribute is the only attribute which may
appear in the conclusion of a rule (and for convenience it is not included in A).
Elements from the domain of the decision attribute are identified as Class.

A rule set is a set of rules denoted by R. The individual rules of this rule
set are denoted as R, R', R"”, etc. The prime notation is used to distinguish

the rules within a particular rule set. A subscript will be used to distinguish

rule sets. Each rule has the syntactic form:

R: Cond = C(lass,
where Cond specifies a condition under which the decision Class can be deduced
for an object. If an object o satisfies the conditions specified by Cond, then the
rule R is said to trigger on the object o.

Cond consists of a simple logical conjunction:

Ci N...NCp,

Cr has the form A; < v or A;>v when A; is an integer attribute and the
form A; € {v1,...,vn} or A;¢ {v1,...,v,} when A; is a categorical attribute.
The forms A; = v and A;#v will be used for categorical attributes as an

abbreviation for singleton sets of values.

The values v and v; are drawn from the domain of 4;. The form Cy, is referred to

as a condition triplet and consists of an attribute, a relational operator, and
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a value or set of values. A second subscript will be used when it is important
to identify the rule set from which the rule containing this condition triplet

originates (C;i for rule set R;).

If the object o triggers the rule R, then R(0) is taken to be the set containing
just the decision of this rule, { Class }. If o does not trigger this rule, then R(o)

will be the empty set. R(0) is the union of R(0) over all rules in the rule set R.

The term scope refers to those objects from O which trigger a particular

rule. The scope of the rule R is the set of objects for which Cond is true.

A rule set is derived directly from a decision tree by constructing a single
rule for each path through the decision tree from the root node to a leaf node.
The concept of a directly derived rule set is introduced to distinguish these rule
sets from modified rule sets. A directly derived rule set is equivalent to the
decision tree. Reference will be made to a path through a decision tree which,
unless otherwise stated, will refer to the direct path from the root node to a
leaf.

A conflict consists of a pair of rules Ry and Ry (members of the rule
sets Ry and Ry respectively) having consistent conditions yet inconsistent

conclusions. That is, there exists objects which can trigger both rules, but the
rules conclude different values for the decision attribute. The symbol ) will
be used to refer to a conflict between two rules. Often, it 1s convenient to also
associate with a conflict the subset of the training set containing those objects
which trigger either of the rules in conflict. The two rules have the form:

Ry Condy — C(lassq,

Rs: Conds — C(lasss,
where Class; # Classa, recalling that the subscript is used to distinguish be-

tween the two conditions and to distinguish between the two conclusions. It

also ties Ry to the rule set R; and Rs to the rule set Ro.

The set of objects for which two given rules trigger is referred to as the

common scope of those two rules, and denoted by Cs:

Cs ={olo€ O, Ri(o) #{}, Ra(o) # {} }
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Associated with each rule in a directly derived rule set is a non-empty subset
of the training set containing those objects which trigger the rule. For the rules

Ry and Ry, these corresponding training subsets are denoted by Tr; and Trs:

Tri1 = {o]o € Tr, Ri(o) # {} }

Trz = {o]o € Tr, Rao(o) # {} }

A training set from which a decision tree of depth 1 (a decision tree having
a root node, and one or more branches leading only to leaf nodes) is induced
will be referred to as a terminating training set. Such a training set is
partitioned by the induction algorithm so that each cell satisfies the termination
criterion. In ID3, for example, with partitions based upon a single attribute and
a termination criterion of decision homogeneity, a terminating training set, is
one containing at least two different decision values and for which a cost of 0 is

computed for a partition.

The experiments of Chapter 3 illustrated the possibility of equally good
partitionings of a terminating training set. Only one of these partitionings is
chosen, leading to a collection of rules which differ in only a single condition
triplet (corresponding to the different branches from the common node of the
tree). A different choice leads to a collection of rules differing from any other
rules induced from this training set in only a single condition triplet. Figure 4.1

illustrates this in terms of both decision trees and rules.
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B B
B/\32 B/\32
c Dy A Dy
Y\ /"
Dy Do Dy Dy
If B= B1 and C = (1 Then D If B= By and A = Ay Then D9y
If B= B and C = (g Then D4y If B= By and A = Ay Then D,
If B =By Then D If B = Bg Then D

FIGURE 4.1: Multiple decision trees (rule sets) can be in-
duced when equally good partitions of a terminating training
set arise. In this illustration the training set containing those
objects of the original training set having the value B for at-
tribute B is a terminating training set. Partitioning this train-
ing set using either attribute C or attribute A results in each
cell of the partition containing objects with a single common
decision. A terminating training set will generate a decision

tree of depth 1.

Conflicting rules are derivable by choosing alternative partitions of a ter-
minating training set. Such a terminating training set will be denoted as Tr..
Both Tr; and Trs are subsets of Tr.. Whilst conflict can arise in other circum-
stances, it is only those conflicts arising in the context of terminating training

sets that will be considered here.
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4.3 PROPERTIES OF CONFLICT

The properties below formalise some of the intuitions underlying the MIL al-
gorithm. The relationship between rules from pairs of decision trees and the
conflicts which result are examined. The context is that of inducing multiple

decision trees from a single training set.

Property 4.1: Suppose Ry is a directly derived rule set and that Ry
and R are distinct rules contained in this rule set. Then Condj and

Cond), cannot both be true of a single object.

The collection of rules belonging to a rule set directly derived
from a decision tree are mutually exclusive: at most one rule

can trigger for any object.

Branches emanating from a node of a decision tree correspond to mutually
exclusive choices and thus direct paths from the root node to a leaf node of the
decision tree are mutually exclusive. Since the rules in Ry and the paths through
the decision tree from which Ry was derived have a one-to-one correspondence,

the conditions of each rule correspond to these mutually exclusive choices.

Property 4.2: Suppose Ry and Ry are distinct rule sets and that (Ry,
R3) and (R}, R,) are two different pairs of rules from the respective
rule sets. If the common scope of the pair of rules Ry and Rs is Cs,

and the common scope of the pair of rules R| and R} is Cs’, then

Cs N Cs' = 0.

The common scope of any pair of rules drawn from two dis-
tinct rule sets has no overlap with the common scope of any

other different pair of rules drawn the same two rule sets.

If it were possible for one object to be in both common scopes then two rules
from the one rule set must have triggered, contradicting Property 4.1. Whilst

this property holds in general, it is of particular interest for rules in conflict.
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The above two properties consider the scope of rules within a rule set,
and the common scope of rules drawn from different rule sets. The following

properties consider the actual structure of rules in conflict.

Property 4.3: Suppose R; and Rs are distinct rules (from directly
derived rule sets Ry and Ry respectively) which conflict and the set
of condition triplets contained in Ry is {Ci1,...,Cin} and the set of
condition triplets contained in Ry is {Ca1,...,Com}. Then n = m and
the size of the set resulting from the union of the two sets of condition

triplets is m + 1.

Two rules in conflict have all but one condition triplet in com-
mon.

This property is a direct consequence of considering only those conflicts which
arise when alternative choices for the partitioning of a terminating training set
exist. Rules generated from a terminating training set have all but one condition
triplet in common. The rules in conflict will be written as:

Ry : Cond NCy = C(Class;

Ry : Cond N Co = (Classs

A consequence of this property is that rules in conflict are derived from a

common terminating training subset.

Property 4.4: Suppose R; and Rs are distinct rules (from directly
derived rule sets Ry and Ry respectively) which conflict, and that Tr,
is the corresponding terminating training subset. Then there exists
R| € Ry, R,eR, a their corresponding terminating training subset
Tr!, such that R} and R} are in conflict and Tr, = Tr..

Conflicts arise in groups. Each group of conflicts share a com-
mon terminating training set from which they were derived.

Suppose R; and Rs have the form as above. Tr. will consist of those objects
in Tr for which Cond is true. The induction algorithm will have partitioned
Tr. to generate Ry and at least one other rule. One of these other rules will

conclude Classs:



§4.3 The MIL Algorithm 114

Ry : Cond NCi; = Classsy

The case of Ry 1s symimetrical, being generated from an alternative partition of

Tr.. A rule of the following form will also be generated:
R, : Cond NC) = C(Classy

Just as C; and Cs are consistent, C] and C} are consistent, and thus R} and R%

are also in conflict.

For a terminating training set containing two distinct values for the decision
attribute at most two conflicts result. For a terminating training set with three
distinct values for the decision attribute at most six conflicts result. In general,
for a terminating training set with n distinct values for the decision attribute at
most n* (n — 1) conflicts result. Conflicts arising from a common terminating
training set will be referred to as complementary conflict pairs, and will be
denoted as the set @ = {Q1,..., @, }, where the notation @; is used to denote
a pair of rules in conflict together with the corresponding terminating training

set.

Property 4.5: Suppose R; and Ry are in conflict and R; and R}, are
also in conflict, where Ry € Ry, Ra, R, € Ry, and Ry#R,. Then R»

and R/, are derived from the same terminating training set.

Two conflicts involving a common rule are derived from a

common terminating training set.
This follows directly from Property 4.4.

The above properties pinpoint the key features used to identify and remove

conflict. The following example demonstrates how these properties can be used.
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4.4 EXAMPLE

The decision trees T106DC and T106DI of Chapter 3 were constructed using
the information-theoretic cost function to select an attribute at each step. They
differ only in the attribute chosen to partition a terminating training set. For
T106DC a categorical attribute was always selected in preference to an “equally

good” integer attribute. For T106DI, integer attributes were favoured.

Whilst T106DC and T106DI are equally good decision trees with respect
to the cost function, their performances differ. T106DI has a higher coverage

than T106DC, but is less accurate in the decisions it makes.

The rule sets corresponding to these two decision trees will be used here to
introduce the issues which must be addressed in combining decision trees. The
process of resolving the conflicts which arise will be described. This example 1s
intended to provide an overview of the MIL algorithm before the full details are

provided.

4.4.1 Treating Conflicts as Null Decisions

Disagreement between the decisions made by the two rule sets occurs in only 416
cases, of which 162 (39%) are mild disagreements and 254 (61%) are moderate
disagreements. The coverage of T106DI is a superset of the coverage of T106DC,
and so the combined coverage is the same as that of T106DI, which is 1164 more
objects than T106DC.

The simplest approach to handling conflict is to ignore it by returning a Null
decision. The combined coverage of T106DC and T106DI is then decreased by
416 objects. Table 4.1 presents a summary of the performance of this combined
rule set (CombDCDI) for comparison with T106DC and T106DI. Considering
the measure of performance as a two dimensional space with agreement and

coverage as the axes, the combined rule set represents a compromise between

T106DC and T106DI.
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Experiment Description Cover Agree Mild Mod Strong
CombDCDI Incomplete Combined Rule Set. 79.3 67.4 30.8 1.8 0.0
T106DC Application of the DTTA. 70.4 71.5  26.7 1.8 0.0
T106DI DTIA Favouring Integers. 84.3 64.8 33.1 2.1 0.0

TABLE 4.1: Summary of results from applying the (conflict
ignored, and therefore incomplete) combined rule set to the

8413 objects of the Range database.
combines T106DC and T106DI. Any conflicting decisions are

The combined rule set

replaced by Null decisions. All figures are percentages.

Of interest is the observation that of the 416 objects given conflicting deci-
sions, 76% are given decisions by T106DI which disagree with the Model. The

conflicts indicate deficiencies in the knowledge.

This deficiency is to be addressed. The approach here analyses conflicts

in the context of the information contained in the training set, attempting to

increase the coverage of a combined rule set, whilst maintaining its accuracy.
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4.4.2 Resolving a Conflict Between Two Rules

Two of the rules in conflict will be identified as DCss from T106DC and DIsy
from T106DI:

DCa5:  Soil = 26, UVeg = 2 = VLow,

DIyy: Soil = 26, DPort < 635 =— Medium.
These are in conflict for any object which satisfies the condition: Soil = 26,
UVeg = 2, and DPort < 635. In removing this potential for conflict, it must be
noted that an object which does not satisfy this condition, but does trigger one
of these rules, must still have the same decision assigned to it. One approach
is to strengthen the condition of one of the rules, leaving the other rule as it is.
This involves restricting the chosen rules’ applicability by adding conditions to
it. The rules here may be strengthened by adding the negation of the condition
of the other rule in the conflict. For example, rule DCy5 could become (after

simple modifications):

Soil = 26, UVeg = 2, DPort > 635 — VLow.

This approach would meet our goal of removing the potential for conflict
whilst maintaining coverage. It is not clear though how to decide which rule
should be strengthened. The MIL algorithm effectively delays this decision by
strengthening both rules in the above manner:

DCl.:  Soil = 26, UVeg = 2, DPort > 635 = VLow,
DIL,,: Soil = 26, DPort < 635, UVeg #2 — Medium.

A new rule can then be introduced to handle the conflict. It will consist of
the conjunction of the conditions of the two conflicting rules and will make a
decision of Conflict,.
DCecg5:  Soil = 26, UVeg = 2, DPort < 635 = Conflict,.
If Conflict; were replaced by the decision Medium the effect would be that of

strengthening the single rule DCas as above.
In the absence of other knowledge, the training set is called upon to provide
guidance in assigning decisions to objects triggering rule DCcg5. The terminat-

ing training set (Tr.) from which these two rules were generated is listed in
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Region  Soil UVeg [Veg DPort AWMIH AWMIS AWMIW  Decision

30503 26 2 4 801 16 16 09 V6ow
21423 26 3 2 467 52 09 33 Medium
21424 26 3 2 469 49 09 29 Medium

TABLE 4.2: The terminating training set Tr. associated
with the two rules DCsy5 and Dlyy is listed. The first object
listed constitutes Try and corresponds to DCas (Soil = 26 and
UVeg = 2) whilst the final two constitute Try and correspond
to DIsy (Soil = 26 and DPort < 635).

Table 4.2. Condition triplets which distinguish between the objects of Tr; and
Try are sought by considering each attribute. Low values of AWMIH, for ex-
ample, are associated with Try (a decision of VLow), whilst higher values are
associated with Try (a decision of Medium). A midpoint split of this integer
attribute, with the mid-point of % or 33, partitions this training set homo-
geneously. The integer attribute AWMIS can similarly be used with a mid-point
value of 13, as can AWMIW with a midpoint of 19. The categorical attribute
LVeg similarly partitions on LVeg = 2 and LVeg = 4. The other attributes
are not considered since they already appear in DCcy5. Taking AWMIS, for
example, two new rules may be proposed:

DCcl25: Soil = 26, UVeg = 2, DPort < 635, AWMIS < 13 — Medium,

Dic),:  Soil = 26, UVeg = 2, DPort < 635, AWMIS > 13 = VLouw.

The rules DCss and DIyy can be replaced by DChs, and DI,,, and the
rules DCchs, and DIch, can be suggested for inclusion in the combined rule
set. Of those objects in the Range database for which the condition Soil = 26,
UVeg = 2, and DPort < 635 is true, only 6% of these trigger rule DCclg,
whilst the rest trigger DIch,. 63% of these objects were previously in moderate
disagreement between T106DI and the Model, and now in agreement with the
Model. There are no other changes in terms of agreement and disagreement with
the Model. The performance of this modified combined rule set is summarised
in Table 4.3, indicating increased coverage whilst maintaining the accuracy.

Whilst the increase in coverage is slight, only one conflict involving just 0.4%
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Experiment Description Cover Agree Mild Mod Strong
CombDCDI Incomplete Combined Rule Set. 79.3 67.4 30.8 1.8 0.0
CombDCDIa Modified Combined Rule Set. 79.7 67.4 30.8 1.8 0.0

TABLE 4.3: Comparison of the results from using the mod-
ified combined rule set (replacing DCy5 and DIy, with DCy,
DI,,, and introducing DCchy and Dlch,) and the incomplete

combined rule set. Conflicts which have yet to be dealt with

are still regarded as Null decisions. Figures are percentages.

of all the objects in the Range database for which conflict arises has been dealt

with.

4.4.3 Resolving All Conflicts

All remaining pairs of conflicting rules can be sunilarly treated. However,
Property 4.4 observes that conflicts occur in groups based upon terminating
training sets. The MIL algorithm resolves conflict in the context of complemen-

tary conflict pairs.

The first step is to identify these sets of complementary conflict pairs. There
are three such sets in the combined T106DC, T106DI rule set, each involving
four rules.

The first set contains the following rules, where DCy4 and DIy4 are in

conflict and DCyg and DIy5 are in conflict:

DCy4:  Soil =16, UVeg € {2,3} =— VLow,
DIy4: Soil = 16, DPort < 766 = Low,
DCi6:  Soil = 16, UVeg =9 = Low,
DI;5: Soil = 16, DPort > 766 — VlLow.

As with the earlier example, each rule is strengthened to eliminate the potential

for conflict:

DCl4:  Soil = 16, UVeg € {2,3}, DPort > 766 = VLow,
DI,:  Soil = 16, DPort < 766, UVeg ¢ {2,3} = Low,
DCls:  Soil = 16, UVeg = 9, DPort < 766 — Low,
DI'.:  Soil = 16, DPort > 766, UVeg # 9 — VL@ow.
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However, the rules DC}, and DC/4 are redundant, since they are specialisations
of DI’ 5 and DI, respectively. They can be removed, with the consequence that

the four original rules are replaced with just two.

The actual conflicts are now explicitly identified with the following rules:

DCcisa:  Soil = 16, UVeg € {2,3}, DPort < 766 = Conflict,,

DCci:  Soil = 16, UVeg = 9, DPort > 766 = Conflicts.
The next set of complementary conflicts is handled similarly. From the four
rules:
DCig:  Soil =19, UVeg = 3 = Medium,
DIyg: Soil = 19, AWMIH > 28 — Low,
DCop:  Soil =19, UVeg =4 = Low,
DI;s: Soil =19, AWMIH < 28 = Medium,

the following four rules are generated:

DI},: Soil = 19, AWMIH > 28, UVeg #3 — Low,

DI}g: Soill = 19, AWMIH < 28, UVeg #4 = Medium,

DCcig9:  Soil =19, UVeg = 3, AWMIH > 28 — C(Conflict,,

DCeco:  Soil =19, UVeg =4, AWMIH < 28 = C(Conflicts.
Sumilarly, the complementary conflicts:

DCa5:  Soil = 26, UVeg = 2 — Vi@ow,

DIs4: Soil = 26, DPort < 635 = Medium,

DCa:  Soil = 26, UVeg = 3 = Medium,

DIss: Soil = 26, DPort > 635 — VLow,

generate:
DL,.: Soil = 26, UVeg # 3, DPort > 635 — VLlow,
DI,,: Soil = 26, UVeg # 2, DPort < 635 — Medium,
DCecaos:  Soil = 26, UVeg = 2, DPort < 635 = Conflict,,

DCecos:  Soil =26, UVeg = 3, DPort >= 635 = Conflict,.
The resulting combined rule set contains 6 new conflict-free rules and 6

conflict identifying rules in place of the original 12 rules in conflict. The next

step 1s to deal with these rules which explicitly identify conflict.
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The rules DCc14 and DCc1g were generated from the four rules associated
with a terminating training subset consisting of 12 objects. These objects have
a decision of either VLow or Low. Rule DCecy4 triggers on 124 objects in the
whole of the Range database, whilst DCey6 triggers on only 13 objects. With
the benefit of knowing the decisions made by the Model it is observed that for

these 137 objects, the Model also makes a decision of either VLow or Low.

An attribute is now chosen to differentiate between the two training sub-
sets. The attributes Soil, UVeg, and DPort are not considered, since they have
already been employed in the induction process in generating the rules under
consideration here. The potential candidates are LVeg, AWMIH, and AWMIW
(AWMIS does not distinguish between those objects in the training subsets).
The split points for each of these attributes, together with the associated deci-
sions are listed below. Any of these pairs can be introduced to the conflict rule,

generating two conflict-free rules.

IVeg € {1,4} = VLow, LVeg =2 = Low;
AWMIH < 27 = VLow, AWMIH > 27 = Low;
AWMIW < 20 = VLow, AWMIW > 20 = Low.

Since the decisions made by the Model are known, the performance of the
two resulting conflict-free rules can be determined. In using the first pair of
conditions above (those involving LVeg) to generate two rules from DCey4, 66%
(82) of the associated objects (124 in all) will be covered. Of these, 99% will be
in agreement with the decisions made by the Model, whilst 1% is in mild dis-
agreement. If the pair involving AWMIH is chosen instead, then full coverage of
the objects results, with 79% in agreement and 21% in mild disagreement. The
final choice, using AWMIW, again results in full coverage with 99% agreement

and only 1% mild disagreement.

The conflict rule DCeci6 is associated with exactly the same terminating

training subset, and thus the same choices exist. The following two tables
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summarise the performances of the new conflict-free rules for each of the possible

choices, for conditions to be added to the rules DCci4 and DCcyg respectively.

Attribute Split Agree Mild Cover Attribute Split Agree Mild Cover

LVeg 1,42 99% 1% +82 LVeg 1,42 92% 8% +13
AWMIH 27 79% 21% +124 AWMIH 27 46% 54% +13
AWMIW 20 99% 1% +124 AWMIW 20 85% 15% +13

The conflict rules DCec19 and DCcyq are similarly handled. The associated
terminating training set is the subset of T106 for which the condition Soil = 19
holds. It consists of 9 objects having decisions of either Medium or Low. DCciq
triggers on 17 objects from the Range database, for which the Model makes
decisions of either Medium or High. DCecqo triggers on 8 objects from the
Range database, for which the Model decides Low.

Candidate attributes are AWMIS and AWMIW, both with split points of
14, and LVeg with the sets of values {2,11} and {3,26}. The performance
of the conflict-free rules which can replace DCcy1g9 and DCcqyy respectively is

summarised as:

Attribute  Split  Agree Mild Cover Attribute  Split  Agree Mild Cover

IVeg 2,113,726 88% 12% +17 LVeg 2,11 3,26 100% 0% +6
AWMIS 14 88% 12% +17 AWMIS 14 88% 12% 48
AWMIW 14 88% 12% +17 AWMIW 14 100% 0% 48
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Experiment Description Cover Agree Mild Mod Strong
Best Select best rules. 84.3 67.4 30.9 1.7 0.0
Worst Select worst rules. 82.7 66.6 31.4 2.2 0.0
CombDCDI Combined Rule Set. 79.3 67.4 30.8 1.8 0.0
T106DC Application of the DTTA. 70.4 71.5  26.7 1.8 0.0
T106DI DTIA Favouring Integers. 84.3 64.8 33.1 2.1 0.0

TABLE 4.4: Summary of results from choosing the extra
condition for each conflict rule which leads to the best perfor-
mance, and then the choice which leads to the worst perfor-

mance, compared to previous rule sets.

The conflict rules DCca5 and DCcas generate rules with the following per-

formances:

Attribute Split Agree Disagree Cover Attribute Split Agree Disagree Cover

ILVeg 24 92% 8% +12 LVeg 24 2% 98% 4154
AWMIH 33 63% 3% +35 AWMIH 33 45%  55%  +219
AWMIS 13 63%  37% +35 AWMIS 13  30%  70%  +219
AWMIW 19 63%  37% +35 AWMIW 19  45%  55% 4219

These results provide a bound on the performance of MIL in this example.
For each conflict MIL will choose one of the alternatives. Table 4.4 compares the
best possible and worst possible conflict-free combined rule sets. The best rule
set has coverage equal to that of T106DI, the best of any coverage obtained,
and has greater agreement than that of T106DI. Even the worst rule set has
similar coverage and percentage agreement. In comparison to T106DC, both

the best and worst offer more coverage, at a cost to the accuracy.

This example has demonstrated how two rule sets can be combined such
that the potential for conflict is removed from the combined rule set. It also
empirically demonstrates that the strategy of using a third attribute which
also partitions the corresponding terminating training set to assist in resolving

conflict recovers coverage with accuracy.
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4.5 RESOLVING CONFLICT

The introductory example illustrated improvement to a particular combined
rule set by resolving conflict. A general framework for resolving the type of
conflict which arises as a result of combining decision trees is now presented.
The task of reconciling two rules in conflict is packaged up in a conflict resolver
(MlLer). The conflict resolver removes the conflict whilst attempting to retain

coverage, as illustrated in the example above.

4.5.1 Specifications

MIL has three inputs: two rule sets to be combined (Ry, and R4 say) and the
original training set from which both rule sets were induced (Tr). A combined
rule set is returned (R). The following requirements are placed on the combined
rule set R:

1. For any object 0o € O, if Ri(0) = {Class;} and Rs(0) = {Class;} and
Class; # Classj, then one and only one of the following holds: either R(0) =
{Class;}, or R(0) = {Class;}, or R(o) = {}.

2. a) For any training set object o € Tr, if Ri(0) = {Class;} then R(o) =
{Class;}.

2. b) For any training set object o € Tr, if Ry(0) = {Class;} then R(o) =
{Class;}.

3. For any object o € O, if Ry(0) UR3(0) = {Class;} then R(o) = {Class;}.
The first statement requires that all conflicts between R; and Ry be resolved:
R is a conflict-free rule set. The second and third require that R, like Ry and
R, is Tr-consistent. That is, R makes the same decisions for objects in Tr as
those associated with the training set. The fourth requires the combined rule
set to cover those objects covered by the rule set being combined, where conflict

does not arise.

The conflict resolver MILer has three inputs: a pair of rules in conflict (R

and Rs) and the corresponding terminating training set (Tr.). Up to four
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rules are returned by MlLcr, identified as Cmby, Cmbs, Cmbs, and Cmbs. The
following requirements are specified for the conflict resolver. Recall that the set

Cs is the subset of all objects from O for which both R; and Ry trigger.

1. For any object for which both R; and Ry do not trigger (o ¢ Cs), if
Ry(0) = {Class;} then Cmbi(o) = {Class;}.

2. For any object for which both Ry and Ry do not trigger (o ¢ Cs), if
Ro(0) = {Class;} then Cmbsy(0) = {Class,}.

3. The rules Cmbs and Cmbs should trigger only on objects in Cs, and then,

at most one should trigger.

The rules Cmb; and Cmbs are replacements for (or specialisations of) R; and
R» and will be called the replacement rules. The two new rules Cmbs and
Cmbys are introduced to handle objects in conflict and are called suggested
rules. The first two statements indicate that the replacement rules must make
the same decisions for those objects in O but not in Cs as previously made by
Ry and Rs. The third requirement restricts the scope of the suggested rules to
only those objects in Cs. No object other than thos contained in Cs can satisfy
the conditions of either rule. Also, the suggested rules may not simultaneously

trigger.
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4.6 THE CONFLICT RESOLVER

The conflict resolver is at the core of the MIL algorithm and will be described
first. Each step is briefly introduced, followed by a detailed description of the
operations involved. To summarise, MlLer begins by modifying Ry and Ry so
that their conditions are mutually exclusive, generating conflict-free Cmb; and
Cmbs. It then considers candidate descriptions, based on a difference between
the two training subsets Tr; and Trs. One of these candidates is selected and

used to construct the suggested rules.

4.6.1 Eliminate Conflict

Step 1. Construct replacement rules: Strengthen Ry and Rs such that
both cannot trigger for the same object from the universe, and

such that they still make correct decisions for objects in Tr..

The replacements rules introduced in the example (Section 4.4) satisfy these
constraints and are of the form:

Cmby:  Condy AN —~Conds = Classy

Cmbsy:  Condyg AN —-Condy = Classs
The conjunction Cond; A ~Conds describes all those objects in Tr that are
also described by Cond; alone, and similarly for Conds A =Cond,. Hence
Cmby and Cmbs will cover the same objects in Tr as covered by Ry and Rs.
Further, Cond; A =Conds excludes objects in Cs. Cmb; will make the same
decisions for all the objects not in Cs as made by R; previously, and similarly
for Cmbs. Thus, by replacing Ry and Rs by Cmby and Cmbs, Tr-consistency is
maintained, and decisions made for objects not in Cs are unchanged, satisfying

the requirements.

4.6.2 Constructing Candidate Descriptions

The coverage of the rules Ry and Rs has been reduced by specialising them
so that their conditions are mutually exclusive. Coverage is regained by intro-

ducing new rules built from the conjunction of the conditions of Ry and R»
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(Condy A Conds) but further specialised by the addition of condition triplets

derived from the associated training subsets.

The second step of the conflict resolver searches for a distinguishing charac-
terisation of the two training subsets, by considering as candidate descriptions
pairs of condition triplets which differentiate between the objects in Try and
Trs.

Step 2. For each attribute in A attempt to construct a candidate de-
scription, consisting of a pair of condition triplets, (Consy,
Conss), such that Cons; is true for every object in Trq, but
not for any object in Try, and Conss is true for every object

in Tra, but not for any object in Tr;.

(Any attribute appearing as A; = v in either of Condy or Conds, can be removed
from consideration. No description involving this attribute alone can be used

to distinguish those objects in Tr; from those in Trs.)

Binary splits are considered in building candidate descriptions. Integer and
categorical attributes will be considered separately. Vi and Va2 will denote the
sets of values of an attribute associated with the two training sets. For attribute
A;, Vi = {Ai(o)|o € Tr1 }, and Vo = {4;(0) | 0 € Tra}.

Case 2.1. When A 1s an integer attribute: Find some value of A, v say,
such that all the values of A in Try are less than (or alter-
natively greater than or equal to) 4 and all values in Trs are
greater than or equal to (or less than) 7. If no such 4 can
be found, then no candidate description is constructed for this

attribute.
If a candidate description can be constructed, then either max(V;) < min(V3) or
max(V2) < min(Vy). The former will be assumed, with the latter case covered
by symmetry. Let

= A d = min A(o).
a Orél%zi (o), and g Orélrgl? (0)
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That is, a i1s the maximum value of A in Vi, and § is the minimum value in
Va. If @ < 8 then we can begin looking for a suitable v such that a < vy < 3.
a+8

One such v is =57, rounded up to the nearest integer. If such a + exists, then

Consy as A < v and Consg as A > v are a candidate pair of condition triplets.
Case 2.2. When A is a categorical attribute: Find two sets of values of
the attribute A such that every object in Tr; has a value for
A which is in one of the sets, and every object in Trs has a
value which is in the other set. If appropriate disjoint sets can’t
be found then no candidate description is constructed for this

attribute.

V1 and V, are the obvious choices. If the intersection of V; and V5 is empty,
then Consy as A € V1 and Conss as A € V5 are a candidate pair of condition

triplets. Otherwise, no candidate description based on A is constructed.

4.6.3 Description Selection

If no descriptions have been constructed in Step 2, then no new rules can be

suggested and this and the next step will not apply.

The approach taken in choosing from amongst the candidate descriptions
is based on the heuristic: descriptions using integer attributes are preferred to
those using categorical attributes. Results from Chapter 3 indicate that such a

heuristic can lead to increased coverage.

Step 3. If the set of candidate descriptions is non-empty, then choose

the description which accounts for the most objects in Tr,.

If choice still remains, a pre-specified ordering of the attributes is relied upon.

4.6.4 Rule Construction

Rules which cover those objects removed from the coverage by the replacement

of Ry and Ry by Cmbi and Cmbs are now introduced.

Step 4. If a candidate description has been chosen, construct the sug-

gested rules from Cons; and Conss.
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The suggested rules are:

Cmbs:  Condqy A Condy A Cons; = Classy

Cmby:  Condy A Conds A Consy = Classs
There are no objects in Tr for which Cond; A Conds holds (Property 4.1), and
so R remains Tr-consistent. Further, Cs contains all those objects in O for
which Condi A Conds holds, thus the effect of the above two rules is restricted
to Cs.

The final step returns the new rules to MIL:
Step 5. Return {Cmby, Cmbs, [Cmbs, Cmb4]}, where Cmbz and Cmby

are significant only if candidate descriptions were found.
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4.6.5 The MILcr Algorithm

Pseudo-code is used to specify the complete MILecr algorithm.

MILer(Ry, Ry, Tre):—

Descr := §; {Set of candidate descriptions}
Tr1 := {o]|o € Tre¢,o triggers R1 }; {Training set associated with R}
Tro := {o|o € Tre, o0 triggers Rg }; {Training set associated with Rq}

{Step 1—Replacement Rules}
Cmby := Condy AN —~Condg = Classq;
Cmbg := Condg A = Condy = Classa;
{Step 2—Construct Candidate Descriptions}
For A; := Ay,...,Ap Do
V1 := {4;(0) |o € Tr1 }; {Values of A; in Tr; and Trq respectively}
Vo :={Aj(0) |0 € Tra};
Case type of A;:
Integer:
If max(V7) < min(Vy) Then
a := max(V7); 8 := min(V5); v := round(
C1:=4; <vCr:=A4; 2
Descr := Descr + (Cq, C9);
ElseIf min(V;) > max(V5) Then
a := max(Vy); B := min(V}); v := round(#);
C1:=A; 27 Ca:=A; <
Descr := Descr + (C1, C3);
End;

?

“42);

Categorical:
If VinVy =0 Then
C1:=A; e Vy; Co:= A; € Vo
Descr := Descr + (Cq, C9);
End;

End;
Done;
{Step 3—Choose a Candidate Description}
If Descr # ¢ Then

(C1, C9) := (Cq, C3) € Descr, such that

[{o|o € Tre, Cq or Cq is true} | is maximal; {Choose one with largest coverage}

{Step 4—Suggested Rules}
If Descr # ¢ Then

Cmbg := Condq A Condg AC1 = Classq;

Cmby := Condq N Condg A Cy = Classy;
Else Cmbs := Cmby := null;
{Step 5—Return Rules}
Return { Cmbqy, Cmbg, Cmbg, Cmby };
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4.7 USING THE CONFLICT RESOLVER

The input to MIL consists of two rule sets derived directly from different deci-
sion trees, together with the corresponding training set. Potential conflicting
pairs of rules are easily identified by a pair-wise comparison of rules in the two
rule sets. All rules found not to be in conflict can be immediately added to
the combined rule set. Each pair of conflicting rules, together with their corre-
sponding training subset, Tr., is then passed on to the conflict resolver, with

the resulting conflict-free rules added to the combined rule set.

The example presented in Section 4.4 illustrated that conflicts do not arise
in isolation—sets of complementary conflict can be identified. When dealing
with sets of conflict, redundant rules were readily identified and removed. The
example contained conflicts for which the corresponding training subsets con-
tained only two distinct values of the decision attribute. When more than two
distinct values are found, the interaction between the complementary conflicts
is somewhat more complex. To avoid unnecessarily complicating the conflict
resolver, MlLcr is applied separately to each pair of conflicting rules. The re-
sulting redundant rules must be reconciled and opportunities to combine rules,

where sensible, are sought.

4.7.1 Identifying Conflicts

The first step is to identify all potential conflicts. The rules which do not give
rise to conflict in the context of the two rule sets being combined are included

immediately in the combined rule set.

Step 1. Add each rule R in the intersection of R; and Rs to the com-
bined rule set R.

Each of the remaining rules are compared, and all pairs that have all but one
condition triplet in common are collected (see Property 4.3). Each pair is
identified as being in conflict when their decisions differ and their single differing

condition triplets are not mutually exclusive.
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Step 2. For each rule R; in R; with the form Cond,; A C; = Class;,
and for each rule Ry in Ry with the form Cond, ACy = Class;,
where C; and Cy are independent and Class; # Class;, record

R; and Rs as a conflict.
Independence here means that both conditions could hold for a single object.

The order in which condition triplets appear in a rule is not important—
they can thus be re-ordered to ensure that condition triplets common to the two
rules appear first. In practice, because the rules are generated from decision

trees, re-ordering is not necessary.

4.7.2 Application of the Conflict Resolver

Conflicts are grouped into sets of complementary conflicts, and the conflict re-
solver independently applied to each conflict. The rules returned by the conflict
resolver are grouped according to the set of complementary conflicts from which

they were derived.

Step 3. For each @; in the complementary set of conflicts { @1, ..., Qx}
call upon MlLer. Repeat this for each set of complementary

conflicts.

4.7.3 Rule Set Reconciliation

The rules generated by the conflict resolver must now be modified to remove
redundancies and to correct any overly general rules. The resulting combined
rule set must eliminate all conflict. As is demonstrated below, the conflict
resolver can potentially generate new conflicts and redundant rules may also be
generated. The task of reconciling the rules returned by MILcr is treated case-
by-case based upon the number of conflicts contained in the complementary

conflict set.
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4.7.3.1 Binary splits of a terminating training set
The simplest case involves a terminating training set leading to a set of comple-
mentary conflicts containing just two conflicts (a total of four rules). Choosing

one partition of this training set leads to rules of the form:

Ry: Cond NCy — C(lass;
Ry : Cond NCj = Class;

An alternative choice leads to rules having the same form, differing only in the

final condition triplet:

Ry : Cond N Co = Class;
R,: Cond NC, = Class;

Rules Ry and Rs are in conflict as are R| and R),. The conflict resolver will

generate the following replacement rules:

Cmby :  Cond NCi A —Cs = (lass;
Cmb’: Cond NC{ AN—Cy = Class;
Cmbs : Cond NCoy N —Cq = Class;
Cmbly: Cond NCLA-C; = Class;

No conflict is introduced by these rules. R; and R} are the only rules in Ry
which could trigger for a given object satisfying Cond, and similarly for Ra.
Excluding Ri, R}, Ra, and R} from the combined rule set removes the coverage
of those objects satisfying Cond. If an object triggers any one of the above re-
placement rules then that object will not trigger any other rule in the combined
rule set. Further, since C; and Cf can not both be true (and similarly Cz and
C4), there is no possibility of conflicting decisions being made for a single object

from these replacement rules.

Redundancies are identified in the replacement rules when at least one of
Ci and C] is true for any object in . This is the case when C; involves an
integer attribute, where =C{ is simply C; and vice versa. Further suppose that
Cs and C} have the form A; € {v1,...,v,} with non-intersecting sets of values.
Then —Cs is more general than C), and —C) is more general than Cs, so that

two rules of the form:
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Cond N Cs = Class;
Cond N —=C), = Class;

can be collapsed into the single rule:

Cond N—=C; = Class;

Thus, when C; involves an integer attribute, and —Cj is more general than Ca,
the four replacement rules are reduced to just two:

Cmb'll i Cond NCy N —Co — C(lass;

Cmbg : Cond N —=Cy AN C) = Class;

If C5 involves an integer attribute, then —C} is simply Ca, resulting in symmet-

rical rules.

Any suggested rule will also contain Cond, and so the potential for conflict
with the replacement rules must be considered. Whilst the MILcr requirements
state that there can be no conflict between any of the rules generated by one
application of MlLcr, no such guarantee has been made for rules generated by
the multiple application of MlLcr to rules in a complementary set of conflicts.

The suggested rules have the form:

Cmbs :  Cond NC; NCa ANCs = C(lass;
Cmby:  Cond ACI NCLACE = Class;
Cmbs: Cond ACoACLAC, = Class,
Cmbl:  Cond NCLAC, ANCs = Class;

There is no potential for conflict here since Class; is concluded only if C3 (in
addition to other conditions) holds, and Class; is concluded only if C4 holds. But
Cs and C§ are mutually exclusive. Further, cross checking each of Cmby, Cmbs,

Cmb7, Cmb’y with each of Cmbs, Cmby, Cmby, Cmb) identifies no possibility

of conflict.

This step of reconciliation then is appropriate for the case of a terminating
training set containing just two distinct values for the decision attribute. If Cy
and —C] (or Cy and —Cj) are logically equivalent, then the four replacement

rules generated by MlLer can be reconciled into just two.
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4.7.3.2 Ternary splits of a terminating training set

The second case concerns those terminating training sets which contain three
distinct values for the decision attribute. Any choice of attribute will lead to
three distinct rules. Combining two rule sets leads to a set of complementary
conflicts consisting of six conflicts (and six rules). The independent application
of the conflict resolver to these six conflicts leads to a collection of rules which, as
shown below, have conflict and must be reconciled. Only categorical attributes
will be dealt with since integer attributes give rise only to binary splits, and
can not be chosen for the training sets considered here.

The set of rules in conflict have the form:

Ry : Cond NCi, = C(lass; Ry : Cond NCy == C(lass;
Ry : Cond NC] = C(lass; R, : Cond NC, = Classy
R} : Cond NC{ = C(lassy Ry : Cond NCY = Class;

with the six conflicts:

Or: Ri, R Q)2: Ri, R,
QS: /17 RIZ Q4: /17 R/2/
Q5: /1/7 RIZI Q6: llla R2

The complete list of replacement rules generated by MILcr as applied to each of

the conflicts above respectively (pairwise across) is:

Cond NCy N —~Co = Class; Cond NCo AN =Ci = Class;
Cond ANCy AN—Cy = Class; Cond NChA-C; = Classy
Cond NCj A=C, = Class; Cond NCyA=C, = Classy,
Cond ANC{ N=CY = Class; Cond NCY N-C, = Class;
Cond NCY N =CY = Classk Cond NCJ N=C{ = Class;
Cond NCY' N—=C2 = Classy Cond NCo N —=C! = Class;

The first rules on lines one and two are both replacements for R;. They both
restrict the application of Ry to avoid conflict with rules Rs and R,. However,
since Cy and C) involve distinct sets of values, these two rules taken together
are equivalent to the original rule (R;). By applying the conflict resolver inde-

pendently to the two corresponding conflicts we have effectively re-introduced
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the conflict: the first rule on the first line and the second rule on the third line
are, for example, in conflict. In fact, all of these replacement rules give rise to

conflict.

MIL reconciles these conflicts by combining pairs of replacement rules so
that they conform with the original intent—to produce a single replacement

rule. Two rules are combined by conjoining their conditions.

Considering again the first rule of the first line, and the first rule of the

second line the more appropriate replacement rule is:

Cond NCy AN —Cy A =C,y, = Class;

Repeating this exercise for all replacement rules eliminates all conflict, whilst

reducing the number of suggested rules from 12 to 6:

Cond ANC1 A —=Coy A —|Cé —> Class; Cond ACy A=Cq1 A —|C/1/ = Cla55j
Cond A Ci A —|Cé A —|Cé/ = Class; Cond A Cé A=Cy A —|C/1 = Classy,
Cond A Ci’ A=Coy A —|Cé/ —> Classy Cond A Cé’ A —|Ci A —|C1/ — Class;

Further simplification is performed whenever CoVCh VCY | for example, is true
for every object in O. Any pair of these condition triplets appearing negated
in a rule can be replaced by the remaining condition triplet. For example,
Cond NCiA—Ca A —=Ch can be replaced by Cond ACy ACY. If Cy also meets these

requirements, then the 6 replacement rules can be reduced to just 3.

Using similar arguments as for the case of a binary split of the terminating
training set, the twelve suggested rules do not lead to any further conflict. The
conditions of the suggested rules exclude any object which triggers any of the
six replacement rules, and the only possibility for two of the suggested rules to

trigger for a given object lies with the rules which conclude the same decision.

4.7.3.3 Generalised heuristics

The two simplest cases have illustrated how a collection of rules generated
by MILecr by its application to a collection of conflicts belonging to a set of
complementary conflicts can be reconciled. These cases will be summarised

and general heuristics for reconciliation will be introduced below.
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For a complementary set of conflicts involving just two conflicts, each rule
set contributes two rules, and each rule appears in just one conflict. For each
conflict, two replacement and two suggested rules are generated. Thus, we have

2 x 1 X 2 (= 4) replacement rules, and 2 x 1 x 2 (= 4) suggested rules.

Neither the replacement rules nor the suggested rules generated by MlLer
result in conflict. A procedure of reconciliation rationalises the replacement
rules when complementary condition triplets logically cover all possibilities.
The negation of one condition triplet is then logically equivalent to the other
condition triplet. This is trivially true for integer attributes. Under such cir-

cumstances, the 4 replacement rules can be reduced to 2.

For a complementary set of conflicts involving just three conflicts, each rule
set contributes three rules, and each rule appears in two conflicts. Thus, we

have 3 X 2 x 2 (= 12) replacement rules, and 3 x 2 x 2 (= 12) suggested rules.

The replacement rules returned by MlLcr give rise to conflict. MIL recon-
ciles these conflicts by restricting the coverage of the rules by conjoining the
appropriate condition triplets. The number of replacement rules was reduced
from 12 to 6 (there are just 6 rules being replaced). Further simplification was
considered when both groups of complementary condition triplets (involving C;
and C3) covered all possibilities. As with the binary case, the number of rules
can be halved, leading to 3 rather than 6 rules. If all values of only one of the
attributes are represented in the condition triplets, then some simplification can

still be carried out, but no rules can be removed.

For a complementary set of conflicts involving n conflicts, n x (n — 1) x 2
replacement rules, and n x (n — 1) x 2 suggested rules are generated by MlLer.
There are n rules from each rule set involved, and each rule conflicts with n — 1
rules from the other rule set, and two replacement and two suggested rules are

returned by MILcr for each pair of conflicts

The replacement rules contain conflict (for n > 2). Groups of n—1 rules are

conjoined appropriately, leaving just n x 2 replacement rules, for the original
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n x 2 rules in conflict. When all attribute values for each of the attributes are
represented in the n x 2 condition triplets, then the number of suggested rules
is reduced to just n. If all values of only one of the attributes are represented in
the condition triplets, then simplification can be carried out, but no rules can

be removed. The suggested rules do not lead to any conflict.
The remaining steps of the MIL algorithm are thus:

Step 4. For each set of complementary conflicts, add the suggested

rules to the combined rule set R.

Step 5. For each set of complementary conflicts, combine excess re-
placement rules, leaving a single replacement rule for each rule
being replaced. Rationalise these rules further, where appro-

priate.
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4.7.4 The MIL Algorithm

MIL(R{,Ro, Tr):

{Step 1—Add Common Rules to the Combined Rule Set}
R = {RlR € R1 ﬂRz};
{Step 2—Identify Conflicts}
For Eli € Ry and R} ¢ R Do .
RZI is of the form Condzl /\CZ1 = Classzl;
Ci is of.' the form Azi RelZiValuesZi;
For 3%632 and R%gR.Do . _
R‘; is of the form Cond‘; /\C‘; = Class‘%;
C‘% is of .the form AéRel‘;Values%?
If Cond] = Condy and A} # A% and Class; # Classy Then
Tre := {0 € O| Cond|(0)};
R . . RJ .
QCond; = QCondi U {(RZI’RZ’TrC)}’

End; {Complementary conflict sets have Cond in common}
Done;
Done;
For Q € {Qconds---} Do {For each set of complementary conflicts}

{Step 3—Apply the Conflict Resolver}
Repl := §;Intr := (;

For Q € Q Do {For each particular conflict in the set}
(R1,R2,Tre) € Q;
{Reply, Reply, Intrq, Intro} := MILcr(R1, Ry, Trc); {Apply the conflict resolver}

Repl := Repl U { Repl;, Repls };
Intr := Intr U {Intrq, Intro };
Done;
{Step 4—Add Suggested Rules to Combined Rule Set}
R := R U Intr;
{Step 5—Reconcile the Replacement Rules}
R := R U Reconcile(Repl);
Done
Return(R);

The function Reconcile does the work of amalgamating multiple replacement
rules and carrying out further simplifications if possible, as describe in detail in

the preceding section.
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4.8 THE UNIPER EXPERIMENTS

A series of experiments is now described, providing results from the MIL algo-
rithm. The data for these experiments comes from a database recording values
for 4 attributes and a decision attribute. Two of the attributes are categorical
and the other two are integer. The categorical attributes E and S have one of
the values 0, 1, 2, 3, and 4. The integer attributes Y and A range from 0-10
and 15-35 respectively. The decision attribute has three possible values, C1,
C2, and C3. The decisions were constructed using a linear model. Once again,

the data are complete and noise-free.

The complete database consists of 5775 records, being the complete enumer-
ation of all possible values of each attribute. In inducing decision trees, random
samplings of the database were taken, generating training sets of sizes 20, 30,
and 40. Sixty training sets were generated, twenty at each size. These training
sets are identified as r20a, r20b, ..., r20t, r30a, r30b, ..., r40t. From each
training set two decision trees were induced: one using the attribute ordering
of S, E, A, and Y (a categorical bias), the other using an attribute ordering of
Y, A, E, and S (an integer bias). These two decision trees were then combined
using MIL. For example, the decision trees r30aC and r30al were combined to

give the r30aX rule set.

The following three tables record the performance of each of the 120 decision

trees and the 60 combined rule sets.
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Training Categorical Integer Combined
Set Accuracy Coverage | Accuracy Coverage | Accuracy Coverage
r20a 92.1 72.0 78.7 92.0 86.7 92.0
r20b 81.2 80.0 80.4 100.0 83.0 98.7
r20c 84.9 92.0 90.1 96.0 89.6 96.0
r20d 88.5 84.0 94.6 92.0 93.4 92.0
r20e 95.0 92.0 84.8 92.0 91.4 92.0
r20f 88.6 92.0 79.6 100.0 81.1 100.0
r20g 95.7 84.0 76.5 88.0 81.8 87.6
r20h 89.4 88.0 79.3 96.0 81.5 96.0
r20i 90.2 96.0 94.2 100.0 94.7 100.0
r20j 81.4 84.0 75.4 96.0 77.3 96.0
r20k 94.5 84.0 83.2 92.0 85.9 90.3
r201 88.9 84.0 84.9 96.0 88.6 92.0
r20m 86.1 84.0 74.2 100.0 79.3 96.0
r20n 83.4 100.0 83.4 100.0 83.4 100.0
r200 67.9 80.0 67.9 80.0 67.9 80.0
r20p 88.4 76.0 84.5 92.0 86.5 90.1
r20q 86.2 68.0 78.3 72.0 80.7 71.2
r20r 90.3 72.0 72.2 100.0 74.9 98.5
r20s 90.0 76.0 81.4 88.0 81.6 88.0
r20t 89.1 96.0 73.3 100.0 76.7 100.0
TABLE 4.5: Combining decision trees using MIL with train-

ing sets of size 20. Each row provides performance details for

the two decision trees induced from a common training set, to-

gether with the performance of the MIL generated combined

rule set. All figures are percentages.

For training sets of size 20 (Table 4.5), in all cases the coverage of the

combined rule set is equal to or slightly less than the greater of the coverages of

the decision trees being combined. In two cases, (r20b and r20i) the accuracy of

the combined rule set is greater than that of the individual decision trees being

combined. In nine cases the accuracy of the rule set is equal to or slightly less

than that of the better of the two decision trees. In all cases, the accuracy is

greater than that of the poorer of the two decision trees being combined.
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Training Categorical Integer Combined
Set Accuracy Coverage | Accuracy Coverage | Accuracy Coverage
r30a 77.6 88.0 80.6 96.0 81.7 96.0
r30b 100.0 84.0 100.0 84.0 100.0 84.0
r30c 81.2 80.0 84.3 100.0 84.9 96.0
r30d 95.0 80.0 79.7 96.0 84.0 96.0
r30e 95.7 92.0 86.1 100.0 90.8 96.0
r30f 90.3 100.0 90.3 100.0 90.3 100.0
r30g 90.7 92.0 83.8 92.0 87.1 92.0
r30h 65.9 80.0 69.2 100.0 69.4 100.0
r301 95.0 92.0 95.0 92.0 95.0 92.0
r30j 88.7 88.0 84.9 100.0 89.2 93.5
r30k 85.1 96.0 85.1 96.0 85.1 96.0
r301 81.8 92.0 88.0 100.0 86.9 100.0
r30m 91.8 84.0 81.9 96.0 86.4 92.0
r30n 93.8 96.0 86.6 96.0 90.6 96.0
r30o 87.4 92.0 87.8 96.0 91.4 92.0
r30p 94.6 92.0 86.1 100.0 88.3 100.0
r30q 84.2 80.0 93.0 80.0 89.4 80.0
r30r 86.8 88.0 94.0 92.0 93.5 92.0
r30s 91.0 100.0 91.0 100.0 91.0 100.0
r30t 76.2 92.0 92.0 100.0 87.8 93.7

TABLE 4.6: Combining decision trees using MIL—training

sets of size 30.

For training sets of size 30 (Table 4.6), coverage of the combined rule set
is mostly equal to or slightly less than the greater of the coverage of the two
decision trees. In only one case (r300) is the coverage equal to that of the
lesser coverage of the two decision trees, but the accuracy is greater than either
decision tree. There are five instances of a combined rule set having greater
accuracy than either of the individual decision trees (r30a, r30c, r30h, r30j,
and r300). Two of these (r30a and r30h) have coverage equal to the greater
coverage of the decision trees being combined. Overall, both the coverage and

the accuracy of the combined rule set is closer to that of the better coverage and
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Training Categorical Integer Combined
Set Accuracy Coverage | Accuracy Coverage | Accuracy Coverage
r40a 100.0 88.0 92.9 96.0 94.5 96.0
r40b 95.0 92.0 95.0 92.0 95.0 92.0
r40c 93.0 92.0 97.1 96.0 97.9 96.0
r40d 96.2 96.0 96.2 96.0 96.2 96.0
r40e 94.8 88.0 94.8 88.0 94.8 88.0
r40f 93.8 92.0 93.8 92.0 93.8 92.0
r40g 99.0 92.0 99.0 92.0 99.0 92.0
r40h 92.1 88.0 82.5 96.0 85.2 96.0
r40i 91.8 92.0 83.4 96.0 87.2 92.0
r40j 97.9 88.0 97.9 88.0 97.9 88.0
r40k 91.8 92.0 91.8 92.0 91.8 92.0
r401 98.0 92.0 98.0 92.0 98.0 92.0
r40m 98.0 96.0 90.8 96.0 98.6 96.0
r40n 99.0 92.0 91.2 92.0 98.5 92.0
r400 94.1 92.0 87.3 100.0 91.1 96.0
r40p 96.8 88.0 96.8 88.0 96.8 88.0
r40q 90.5 96.0 92.7 100.0 94.5 97.1
r40r 88.9 96.0 97.1 96.0 96.2 96.0
r40s 100.0 84.0 100.0 84.0 100.0 84.0
r40t 96.0 92.0 88.1 100.0 91.9 95.8

TABLE 4.7: Combining decision trees using MIL—training

sets of size 40.

accuracy of the two decision trees being combined. In a number of instances
(r30b, r30f, r30i, and r30k) the same decision tree is induced, irrespective of
the attribute ordering, indicating the absence of any choice for any terminating

training set. In such cases MIL will have no affect.

For training sets of size 40 (Table 4.7), the incidence of the induction of
the same decision tree, irrespective of attribute ordering, is higher (ten cases)
and thus MIL is effective in only half of the experiments carried out here. For
these, three cases demonstrate greater accuracy in the combined rule set than

in the decision trees being combined, with only a small, if any, decrease in
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Training Accuracy Coverage
Set Size | Categorical | Integer |Categorical | Integer
< = 2> I o= I = > I = >
20 14 2 4 |3 2150 3 17 |8 12 0
30 6 5 9|4 5 11{0 9 11 |8 12 O
40 6 10 4 |1 10 9/0 14 6 |4 16 O

TABLE 4.8: Summary of the relationships between the per-

formance of the combined rule sets and that of the decision

trees being combined. For example, 15 of the 20 combined rule
sets in the experiments using training sets of size 20 have an
accuracy greater than that of the “Integer” decision tree. And
17 of these combined rule set had coverage greater than that
of the “Categorical” decision tree. Recall that the “=" cate-
gory for training sets of size 40 includes 10 entries for which
both decision trees, and consequently the combined rule, are

identical.

coverage (r40c, r40m, and r40q). The remaining combined rule sets once again
have accuracy and coverage bounded by the accuracy and coverage of the two
decision trees, with these measures generally being closer to the greater of the
two. These observations conform with those for training sets of sizes 20 and 30.

These results provide support for the use of MIL as an effective approach
to combining decision trees. In each case the coverage and accuracy of the
combined rule set was found to be bound below by the respective minimums
from the decision trees being combined. In most cases the coverage and accuracy
was found to be closer to, or equal to, that of the maximum of the decision
trees being combined rather than to the minimum. In a few cases, coverage was
maintained whilst actually increasing the accuracy to produce a combined rule

set of greater accuracy than either of the decision trees being combined.

Table 4.8 provides a summary of the relationships between the performance

of the combined rule set and that of the decision trees being combined. Various
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trends can be discerned, including the trend that the combined rule set is at
least as accurate, but often more accurate than the “Integer” decision tree. Also,
the coverage of the combined rule set is mostly equal to that of the “Integer”

decision tree, and mostly greater than that of the “Categorical” decision tree.
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4.9 SUMMARY

This chapter has presented in its entirety the MIL algorithm. This algorithm
addresses the situation of multiple decision trees induced from a single training
set. Combining decision trees leads to the potential for conflicting decisions
to be made. A study of these conflicts gave rise to a number of observations
which were presented as a collection of properties of conflict. An example was
presented, illustrating the actual process of identifying and reconciling conflicts.
The full specification of this process was then provided. The algorithm was
then applied to a large sample of decision trees, and the results confirm the

effectiveness of MIL in combining decision trees.

A discussion of issues raised by the approach to combining decision trees
presented in this chapter follows in Chapter 5. Particular attention is paid to

alternatives in implementing the algorithm.



Alternatives in
5 Implementing MIL

The MIL algorithm was developed in Chapter 4 as an approach to combining
induced decision trees. The motivation for combining decision trees comes from
the observation of Chapter 3 that decision tree induction algorithms can induce
multiple decision trees from a single training set. If a categorical attribute
is always chosen over an integer attribute, whenever the algorithm identifies
multiple choices, the resulting decision tree tends to have less coverage, but

often greater accuracy, than when integer attributes are always chosen.

The example of combining the decision trees T106DC and T106DI presented
in Chapter 4 both motivated and illustrated the MIL algorithm. The example
also demonstrated a best and worst performance. A series of experiments in
Chapter 4 confirmed the effectiveness of MIL’s approach to combining decision

trees.

This chapter provides a discussion of further features and issues related
to MIL. These include consideration of alternatives to the implementation of
MIL and various approaches in using MIL. Issues relating to the “suggested
rules” are covered. Sequential and parallel models for conflict resolution in MIL
are considered and shown to produce the same combined rule set. An approach
implementing MIL directly in the decision tree induction algorithm is described.

And the applicability of MIL to more than two rule sets is considered.

Page 147
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5.1 RESTORING COVERAGE

Conflict between pairs of rules in a combined rule set is removed by the MIL
algorithm by adding conditions to each rule, thereby reducing coverage. MIL
regains this coverage by building “suggested” rules, which apply only to objects
in the common scope of the pair of rules in conflict. MIL searches for a further
attribute to use to resolve the conflict. The effectiveness of this approach has
been demonstrated in the examples of Chapter 4. Limitations and alternative

approaches are considered here.

In the context of the type of conflicts described in Chapter 4, conflicting
rules arise when alternative attributes, each capable of partitioning a termi-
nating training set equally well, are chosen. A pre-specified ordering of the
attributes 1s typically used by a decision tree induction algorithm to choose just

one attribute.

The experiments of Chapter 3 demonstrated that using an ordering which
favours integer attributes over categorical attributes generally results in decision
trees with greater coverage but reduced accuracy, when compared to decision
trees induced using an attribute ordering which favours categorical attributes.
These “integer” decision trees and “categorical” decision trees represent a trade-
off between coverage and accuracy. Although other equally good decision trees
might be induced from the training set, these two trees will be considered as

“representative” decision trees.

The MIL algorithm is viewed as a tool facilitating the task of combining
“representative” decision trees into a single rule set. Further domain knowledge
may be required if MIL is to maintain the coverage otherwise lost when removing
conflict. In particular, domain knowledge is useful when MIL needs to choose a

further attribute to use to resolve the conflict.

The current implementation of MIL searches for a resolution of any con-
flict by considering the terminating training set from which a pair of rules in

conflict was derived. Already, two (equally good) attributes have been used,
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each distinguishing between those objects having one decision or another. If
other attributes also distinguish between these objects, then MIL proposes the
use of one of these attribute for resolving the conflict (and only the conflict).
Domain knowledge can usefully be employed to assist in the choice of this at-
tribute. Such domain knowledge might be a partial ordering of the attributes,
based on the difficulty of determining a value for each attribute. In choosing a
third attribute to resolve the conflict, a less attractive attribute will be used.
The resulting “suggested rules” can be presented to the knowledge engineer for
approval, disapproval, or as a starting point for further work on the knowledge

base.

A difficulty with this approach arises when multiple (more than two) such
rule sets are to be combined. Under the scenario described in this thesis, a third
rule set will be induced using an alternative ordering of the attributes, resulting
in different rules only where there are at least three choices for partitioning a
terminating training set. This third attribute is chosen by MIL for use in the
suggested rules when resolving the conflicts between the first two decision trees.
Thus, further care must be taken when incorporating a third, fourth, ete. rule
set into the combined rule set. Such issues have not been fully considered in

the work described here, and are identified as important areas for further work.

Several alternative approaches to generating “suggested” rules are possible.
Three are introduced here, and illustrate various directions that could be taken

in future research.

An alternative is to employ all equally good attributes, rather than just
one. Thus, from a terminating training set for which a number of attributes
define equally good partitions, a composite rule could be introduced. Sub-
components of this rule will test a single attribute’s value, and make a decision.
All sub-components could be considered, and the decision with the most sup-
port taken. A similar approach was introduced in Chapter 3 where for any
conflict the decision with the most support in the terminating training set is

taken. Alternatively, an ordering of the sub-components (based on attribute
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ordering) could be used, leading to a scenario similar to that used in MIL. All
of these approaches make more use of the knowledge that is contained in the

corresponding terminating training set.

Conflict has been defined in terms of rules having consistent conditions
concluding inconsistent decisions. The above approaches attempt to resolve
this conflict using the information contained in the corresponding terminating
training set. A suggested alternative approach to deciding between two decisions
uses a larger sample of objects having either of these decisions. This larger
sample can be the subset of the full training set containing just those objects
having either of the decisions in question. Intuitively, such a larger sample
would contain more information about the types of objects associated with each
decision value, without having the complication of other decision values. Used
as a new training set itself, a new decision tree can be induced. This decision

tree can then be employed when it is known that conflict would otherwise result.

A final alternative borrows ideas from clustering to assist in the resolution
of conflict. Clustering techniques rely upon distance measures to determine
class membership. For objects that give rise to conflict, clustering could be
introduced to associate the objects with the appropriate decision. This would
entail the introduction of distance measures for attributes, a concept employed

in research elsewhere (De Ferrari, 1990).



§5.2 Alternative Implementations 151

5.2 SEQUENTIAL VERSUS PARALLEL

Another issue involves the commutativity of the conflict resolver, and the con-
sequence that MlLer can be employed either sequentially (incrementally) or in
parallel. The properties introduced below summarise observations made in the

development of the algorithm in Chapter 4.

As presented, MIL is essentially a parallel algorithm. Once all pairs of rules
in conflict have been identified, the conflict resolver can be applied to each pair
independently and in parallel. MIL then assimilates the results into the com-
bined rule set (removing redundancies and over-generalisations). Whilst this
parallel approach has advantages in the context of parallel computing, MIL was
originally developed as a sequential process not requiring any post-processing of
the rules. A rule common to a number of conflicts will be modified by successive
invocations of the conflict resolver. This serial approach is demonstrated here
to produce the same collection of rules as the parallel approach. The key to

this is the commutativity of MlLcr.

Recall the terminology and notation of Chapter 4. The examples which
make up the training set and which are presented to the performance element
come from the set of objects O. R is a rule set which results from the process of
combining the two rule sets Ry and Rs, each of which is derived directly from
decision trees induced from the same training set. Suppose the rules Ry and
R, from the rule sets Ry and Ry respectively, give rise to conflict (i.e., they
have consistent conditions and inconsistent decisions). The replacement rules
Cmb, and Cmb, are generated by MlLer as specialisations of Ry and Rs, having
the conflict removed. The suggested rules Cmbs and Cmb, are generated by
MILcr for objects which trigger both rules Ry and Rs. These objects are said

to belong to the common scope Cs of the two rules.

The following discussion will concentrate on the case of a set of comple-

mentary conflicts containing just four rules.
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Property 5.1: When MlLcr replaces Ry and R in R with Cmb; and
Cmbsy, and introduces Cmbs and Cmba, only those objects in Cs are

affected.

Decisions made by R for those objects not in Cs are unchanged
by the replacement of the two rules in conflict with the re-

placement and suggested rules.

This can be verified by considering the structure of the replacement and sug-
gested rules as in Chapter 4. In summary the replacement rules Cmb; and
C'mbs trigger on exactly the same objects as Ry and Ra respectively, except for
those objects in the common scope of Ry and Ra: neither Cmb; nor Cmbs trig-
ger on these objects. Furthermore, Cmb; and Cmbs make the same decisions as
Ry and R» respectively. Thus, replacing Ry and Rs in R with Cmb; and Cmbs
reduces the coverage of R by exactly those objects in Cs. Next, the conditions
of Cmbs and Cmby, the suggested rules, are met only by those objects in the
common scope of Ry and Rs, and thus have no affect upon the objects in O

but not in Cs.

Consequently, the effects of the application of the MlLer algorithm are lo-

calised to the objects which are given conflicting decisions.

5.2.1 Commutativity of MILcr

Assume that MlLcr has been applied to a conflict ), involving the rules Ry and
Rs, replacing Ry and Ry with Cmb; and Cmbsy, and adding the suggested rules
Cmbs and Cmby. Call this modified combined rule set R/. R/ differs from R
only in that Ry and Rs have been replaced by Cmby, Cmbs, Cmbs, and Cmb,.
Under a sequential implementation, following the application of MlLer to @,
the form of the rules involved in some other different conflict @, involving the

rules R} and R say, may have changed. There are only two possibilities:
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Case 1: R} # R and R}, # Rs.

The rules in conflict in @’ are unchanged by the application of MlLer to Q.
The set of objects from O for which CondiACond, 1s true is disjoint from the
set of objects for which CondjACond} is true (Property 4.2). The replacement
and suggested rules resulting from the application of MlLer to @ affect only the
former set of objects and no other objects in O (Property 5.1). With R} # R,
and R, # Rs, the application of MlLcr to @’ is unaffected by the modification

made by the application of MlLer to Q.
Case 2: Either R} = Ry and R, # Rs, or R| # Ry and R, = R».

This is the case where a rule from one rule set conflicts with two rules from
the other rule set. The alternatives are symmetric, and so only the former is
considered: R} = R; and R # Rs. The application of MlLer to @ will replace
Ri by Cmb;, and @’ will then involve the rules Cmb; and R5. The replacement
rules and the suggested rules are considered separately. Recall that the common
scope of the rules in ) and the common scope of the rules in ' are disjoint
(Property 4.2).

On applying MllLer to @ R; and Ry are replaced by Cmb; and Cmbs
respectively. MlLcr applied to Q' replaces Cmb; and Ry by Cmb] and Cmb,.
The following three rules thus replace Ry, Ra, and Rj, respectively.

Cmbll: Condy AN =Conds A —|C’0nd/2 — Classy,

Cmbs:  Condoy N =Cond, —> Classo,

Cmby:  Condy A —(Condy A —~Condy) = Class),.
The third rule is equivalent to the two rules:

Cond', N ~Condy = Classs,

Cond’y A Cond = Classs,.

The second of these rules can be removed, since it can never succeed (Property

4.1) as Cond%y and Conds come from the same decision tree. The final three

replacement rules are then:
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Condy A =Conds A ~Cond, = Class,
Conds N = Condy = C(Class,
Concll/2 A = Condy — Classé.

These rules are symmetric with respect to Conds and Cond’,. Hence, this same
set of replacement rules will result if conflict Q' were dealt with before
For the suggested rules, the same candidate description must be chosen

by MlLer when working on @’ irrespective of whether MlLer has already been

applied to @ Applying MlLcr to @ results in the suggested rules:
Cmbs:  Condyi A Conds A Consy — Class,
Cmby:  Condy A Conds A Consa = Classas,

where Cons; and Conss are the constructed descriptions. Applying MlLer to

()’ where R; has been replaced by Cmb; results in the suggested rules:
Cmbg: Condy N —Conds A Cond'Q A Cons'l —> Classq,
Cmb)y:  Condy A =Condy A Condly A Consty, = Class.

By Property 4.1, these two rules are equivalent to the simpler rules:
Cmby:  Condy A Condy A Cons|, = Classy,

Cmbly:  Condy A Condy A Cons'y, = Class,.

Suppose that MlLcr were applied to @’ before it were applied to Q. The
only possible difference will be the constructed conditions Cons| and Cons’,
in the rules Cmbs and Cmb). Since the training subsets corresponding to R;
and Cmb; are the same, the basis upon which MILcr constructs the candidate
descriptions is unchanged. Hence, Cons| and Cons,, will be used in either case,
resulting in the same rules being generated.

Thus, the order in which MILer is applied to a pair of conflicts, assuming
sequential application, is not important, with the same rules being generated

irrespectively.

5.2.2 Sequential versus Parallel
We can now show that MILer will generate the same final set of rules irrespective
of whether it is applied sequentially or in parallel coupled with rule reconcilia-

tion. The rules produced by way of a sequential application, and by way of a
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parallel application, are considered in the case of two conflicts, involving three
rules (i.e., having one rule in common). The case of two conflicts having no
rules in common is not considered, since with either approach the conflicts are

handled independently and thus identically.

Consider the two conflicts @, involving the rules R; and Ry, and @', in-
volving the rules Ry and R). These rules are of the form:

Riy: Condy —=— C(lass,
Rs: Condy — C(lasss,

Rhy: Condy, = Classh.
Under the sequential application of MlLer to these two conflicts, the resulting
replacement rules are:

Condi N ~Condy N —|Cond/2 = C(Class,

Conds N ~Cond, = C(Class,,

Concll/2 A = Condy = Class'z.

Under the parallel application of MlLcr to these same two conflicts, the resulting

replacement rules are:

Condy N —Conds — Class,
Conds N —Cond, — Classs,
Condy A —=Condly, = Classi,
Condy A =Condy, = Classs,.

which, after reconciliation (as described in Chapter 4), become the same three

rules as in the sequential case.

Likewise, under a sequential application of MlLer to the conflicts, the sug-

gested rules become:
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Condy A Conds A Cons —
Condy A Conds N Conss —
—

Condy A —~Conds A Condy A Cons’
Condy A —~Conds A Condy A Consy =

Class,
Classo,

Class,

Class?,.

The last two rules can be simplified by removal of the redundant —Conds, due

to the presence of Condy (Property 4.1), resulting in exactly the same set of

suggested rules generated under a parallel application of MlLer.

The MIL algorithm thus generates the same combined rule set using either

a parallel or sequential approach.
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5.3 IMPLEMENTING MIL DIRECTLY

MIL represents a general paradigm for handling multiple decision trees, and
is independent of the decision tree induction algorithm employed. The ideas
embodied in MIL could be directly implemented by modifying the decision tree
induction algorithm to handle the case where the selection criterion is unable

to identify a single attribute.

Such an approach has been developed by augmenting the decision tree struc-
ture to allow alternative sub-trees to be associated with a node. A performance
element is then required to consider all alternative sub-trees. One (conservative)
approach is to return a decision only if all sub-trees agree. A second approach
1s to extend the decision tree representation by allowing richer logical expres-
sions. These new logical expressions will replace the single attribute-value test
of the node. This approach is considered here, and its relationship to the MIL

algorithm is shown.

In decision trees, the tests corresponding to individual branches can be
enhanced. Consider the simple case of two alternative sub-trees, one with at-
tribute A, the other with attribute B (both being binary-valued attributes, with
values Ay, As, and By, Ba, respectively), as in Figure 5.1. These two sub-trees
are merged into one, with the corresponding tests as shown in the figure. Just
as with the replacement rules generated by MILcr, the expression associated
with the decision D; (or Ds), cannot simply be A; V By (or As V Bs) as this
can lead to indeterminacy and conflict. This occurs in the case, for example,

where A = A; and B = B,.
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A B
Al A2 By By
Dy Dy Dy
Al /\ _'32 A2 /\ _'Bl
V
By A —As By AN —Ay
Dy Dy
FIGURE 5.1: A simple illustration of the implications of

implementing MIL by modifying the decision tree algorithm,

and consequently, the structure of the decision tree tests. The

expression A; N — B, for example, is to be read as “attribute

A has value A, and attribute B does not have the value By”.

The logical symbols A, V, — represent conjunction, disjunction,

and negation, respectively.

This simple scenario does not handle conflicts, considering only the replace-

ment rules of the combined rule set. Such a merged decision tree is equivalent to

the combined rule set containing the replacement rules, but not the suggested

rules. To verify this, consider the “combined” decision tree of Figure 5.1. Con-

sidering only this part of the decision tree, the corresponding 4 rules are:

Ry :
R :

/

1 -

/

9 -

A=A
A=A
B=DB

B = B>

IR
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MIL will resolve the two conflicts here by replacing these four rules with:
Cmb,: A=A NB# By = Dy,
Cmbzl A:Az/\B%Bl — DQ,

Cmbllz B:Bl/\A#AQ = D,
Cmbg B:BQ/\A#Al — DQ,

which is precisely the same set of rules as represented in the combined decision

tree.

The suggested rules, which are generated by MIL to restore coverage, can
also be implemented directly by way of decision tree manipulation. The same
process as carried out by MlLer can be employed, resulting in the addition of
further branches emanating from this new node, with appropriate expressions

attached, leading to leaf nodes labelled with the appropriate decisions.

Thus, the MIL algorithm can be expressed (and implemented) in terms of
either combining rule sets, or combining decision trees. In terms of decision
trees, the representation must be enhanced, allowing richer expressions to be
associated with branches of the tree. The consequences of this approach are

not further developed here, and remain an interesting area for further work.
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5.4 MULTIPLE RULE SETS

Another important issue is how MIL can be employed to combine three or more
rule sets, each derived directly from decision trees induced from the same train-

ing set.

The process of combining multiple decision trees (rule sets) can be described
using a simple case. Figure 5.2 illustrates three decision trees (sub-trees) which
are, as far as the selection criterion is concerned, alternatives. The process
of merging these to produce a single sub-tree simply generalises the approach
demonstrated in Figure 5.1. Ignoring “suggested rules”, this process of com-
bining decision trees simply restricts the coverage to those objects for which
no conflict arises. The objects that give rise to conflicts are problematical, and
could be regarded as outside the scope of the decision trees, as discussed ear-
lier. To introduce “suggested rules”, new branches may be added to the node to
cover other possibilities, with such branches either generated by MIL or by the
knowledge engineer or domain expert. In general, the set of expressions associ-
ated with the branches emanating from a node will be kept mutually exclusive,
so that branching is minimised (using disjunction where appropriate), and the

possibility for conflict is removed.

In terms of rules, each of the original sub-trees in Figure 5.2 corresponds to
two rules, leading to six rules in the combined rule set. The six rules lead to six
conflicts, which MIL will resolve appropriately, producing six replacement rules,
equivalent to the six disjuncts illustrated in the figure. The MIL algorithm will
combine two of the rule sets, and then combine this combined rule set with
the third rule set. Obvious efficiencies are gained by extending MIL to work on
more than two rule sets at a time, handling the larger set of complementary
conflicts at once. Similarly, direct modifications to the decision tree induction

algorithm may also improve efficiency.
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A B C
A1 A2 Bl BQ Cl CQ
D1 Ds D1 Ds D1 Ds

A1 A =B A (Y As A —B1 A -Cy

\% vV
By A —=Ag A O Bs A=A A Cy

\% V
Ci1 AN—As AN By CoN—A1 AN By

Dy Ds

FIGURE 5.2: A simple illustration of the process of com-
bining three decision trees. This can be implemented either di-

rectly upon the decision trees, or within the rule set paradigm.

The MIL paradigm, then, is not restricted to combining just two rule sets,
but the issue of the suggested rules, as discussed earlier, is an important area

that must be addressed by further research.
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5.5 ALTERNATIVE REPLACEMENT RULES

In generating replacement rules MlLer takes the logical negation of the condi-
tions of one rule, and conjoins this to the conditions of another rule. In the
simplest case, as considered here, all but one of the conjuncts in this negated
conjunction appear un-negated in the condition to which it is being conjoined.
Thus, all but one of these conjuncts in the negated condition are logically un-
necessary, leaving just a single term to be negated and conjoined. The usual
semantics of logical negation is meant, where the negated expression is true

whenever the expression being negated is false.

An earlier version of MIL, as reported in Williams (1988) was somewhat
more cautious in its approach to negating the conditions of another rule. The
approach taken in this earlier work was to express the negation in terms of only
those objects in the training set. Thus, a condition of the form A = A;, when
negated under this scheme, becomes A = A; if the only values of the attribute
A found in the associated training set were A; and A;. Such an approach does
indeed lead to conflict-free replacement rules, but their generality is significantly
reduced. With the goal of producing rule sets with acceptable coverage and

accuracy, the more general concept of negation was found appropriate.

Other options are available in producing replacement rules. The process of
modifying the conditions of just one rule of a pair of rules in conflict, conflict

pair was introduced in Chapter 4. For example, given the rules:
Ry A=A = D
Ry : B=5B = D

suitable replacement rules might be:

Cmby : A=A = D

Cmbs: B=BiNA#A = Dy
Under such a simple scheme, all conflict is removed, and generality i1s main-
tained. This approach can be compared to the informal approach of resolving
conflict by always choosing one decision in favour of another. This approach

was not chosen for MIL as it was argued to be more appropriate to specifically
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identify examples for which the rule sets can not give a consistent decision, and
then to handle these separately.
Further alternative means of generating suggested rules could be considered,

and is again an area identified for further research.
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5.6 SUMMARY

This chapter has discussed a number of alternatives that have been considered
in the implementation of the MIL algorithm. Areas for further research have

been identified and preliminary discussion of these provide initial insights.

Alternatives to the generation of the “suggested rules” have been consid-
ered, with a number of interesting new directions being proposed. Different ap-
proaches to the implementation of the MIL algorithm were discussed, covering
the issues of sequential and parallel execution, and the direct implementation
of MIL within a decision tree induction algorithm. Alternatives to the “intro-
duced rules” were discussed briefly, and the issue of combining many rule sets

was considered.



Summary and
6 Conclusions

This thesis has presented a research effort investigating and developing upon
the problem of inducing decision structures for use in expert systems. The first
stage involved a series of experiments using a decision tree induction algorithm
(Chapter 3). The second stage (Chapter 4) developed the MIL algorithm which
builds upon a decision tree induction algorithm by combining decision trees into
a unified collection of rules with all potential for conflict removed. This work is

summarised below and the conclusions are drawn together.

Decision tree induction algorithms have been a demonstrably successful
knowledge-acquisition tool for building knowledge-based expert systems (Chap-
ter 2). Whilst such algorithms have been used to build knowledge bases for im-
mediate deployment, intervention by experienced knowledge engineers is still,
in general, necessary. An understanding of the nature of the algorithms, and of
the types of decision structures they produce is essential for this technology to

be appropriately employed.

The series of experiments described in Chapter 3 explored a number of as-
pects of the decision tree induction algorithm. Whilst the algorithm was found
to produce good decision trees, a significant inadequacy was identified whereby
apparently equally good decision trees could be induced from a single training
set. These decision trees differed in terms of their coverage and accuracy, some-
times quite significantly. The concept of tree pruning was then considered, and
found to be a useful technique for improving the performance of a decision tree.
An approach to pruning which retained the agreement of the resulting decision
tree with the decisions contained in the training set was introduced, and found

to produce improvements.

The MIL algorithm was developed here upon the observations that a de-

cision tree induction algorithm can generate multiple decision trees and that

Page 165
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alternative induction algorithms can provide alternative decision trees. The
MIL algorithm combines decision trees, providing a tool for use by a knowledge
engineer, providing rapid prototyping and guidance in the development of a

knowledge-based expert system.

The MIL algorithm identifies rules common to the decision trees being com-
bined as constituting an initial rule set. The remaining rules, which potentially
give rise to conflict, are specialised so that any potential for conflict is removed.
New rules are suggested to cover any object which previously would have given
rise to conflict. The experiments indicated that MIL was often able to produce a
combined rule set with maximal, or near maximal, coverage whilst maintaining

accuracy.

Overall, my research, as reported upon in this thesis, has investigated issues
relating to the usage of decision tree induction algorithms. I provide insights
into the performance of these algorithms with real data, drawn from several
domains. I have developed a technique for combining multiple decision trees
and have identified the potential advantages of this technique over the single

application of a decision tree induction algorithm to a training set.
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