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Random forests are a popular classification method based on an ensemble of a
single type of decision trees from subspaces of data. In the literature, there
are many different types of decision tree algorithms, including C4.5, CART, and
CHAID. Each type of decision tree algorithm may capture different information
and structure. This paper proposes a hybrid weighted random forest algorithm,
simultaneously using a feature weighting method and a hybrid forest method to
classify very high dimensional data. The hybrid weighted random forest algorithm
can effectively reduce subspace size and improve classification performance
without increasing the error bound. We conduct a series of experiments on eight
high dimensional datasets to compare our method with traditional random forest
methods and other classification methods. The results show that our method

consistently outperforms these traditional methods.
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1. INTRODUCTION

Random forests [1, 2] are a popular classification
method which builds an ensemble of a single type
of decision trees from different random subspaces of
data. The decision trees are often either built using
C4.5 [3] or CART [4], but only one type within
a single random forest. In recent years, random
forests have attracted increasing attention due to
(1) its competitive performance compared with other
classification methods, especially for high-dimensional
data, (2) algorithmic intuitiveness and simplicity, and
(3) its most important capability - “ensemble” using
bagging [5] and stochastic discrimination [2].
Several methods have been proposed to grow random

forests from subspaces of data [1, 2, 6, 7, 8, 9, 10]. In
these methods, the most popular forest construction
procedure was proposed by Breiman [1] to first use
bagging to generate training data subsets for building
individual trees. A subspace of features is then
randomly selected at each node to grow branches of
a decision tree. The trees are then combined as an
ensemble into a forest. As an ensemble learner, the
performance of a random forest is highly dependent
on two factors: the performance of each tree and the
diversity of the trees in the forests [11]. Breiman
formulated the overall performance of a set of trees as
the average strength and proved that the generalization

error of a random forest is bounded by the ratio of the
average correlation between trees divided by the square
of the average strength of the trees.

For very high dimensional data, such as text data,
there are usually a large portion of features that are
uninformative to the classes. During this forest building
process, informative features would have the large
chance to be missed, if we randomly select a small
subspace (Breiman suggested selecting ⌊log2(M) + 1⌋
features in a subspace, where M is the number of
independent features in the data) from high dimensional
data [12]. As a result, weak trees are created from these
subspaces, the average strength of those trees is reduced
and the error bound of the random forest is enlarged.
Therefore, when a large proportion of such “weak”
trees are generated in a random forest, the forest has a
large likelihood to make a wrong decision which mainly
results from those “weak” trees’ classification power.

To address this problem, we aim to optimize decision
trees of a random forest by two strategies. One
straightforward strategy is to enhance the classification
performance of individual trees by a feature weighting
method for subspace sampling [12, 13, 14]. In this
method, feature weights are computed with respect
to the correlations of features to the class feature
and regarded as the probabilities of the feature to
be selected in subspaces. This method obviously
increases the classification performance of individual
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trees because the subspaces will be biased to contain
more informative features. However, the chance of more
correlated trees is also increased since the features with
large weights are likely to be repeatedly selected.
The second strategy is more straightforward: use

several different types of decision trees for each training
data subset, to increase the diversity of the trees,
and then select the optimal tree as the individual
tree classifier in the random forest model. The work
presented here extends the algorithm developed in [15].
Specifically, we build three different types of tree
classifiers (C4.5, CART, and CHAID [16, 17]) for each
training data subset. We then evaluate the performance
of the three classifiers and select the best tree. In
this way, we build a hybrid random forest which may
include different types of decision trees in the ensemble.
The added diversity of the decision trees can effectively
improve the accuracy of each tree in the forest, and
hence the classification performance of the ensemble.
However, when we use this method to build the best
random forest model for classifying high dimensional
data, we can not be sure of what subspace size is best.
In this paper, we propose a hybrid weighted random

forest algorithm by simultaneously using a new feature
weighting method together with the hybrid random
forest method to classify high dimensional data. In
this new random forest algorithm, we calculate feature
weights and use weighted sampling to randomly select
features for subspaces at each node in building different
types of trees classifiers (C4.5, CART, and CHAID) for
each training data subset, and select the best tree as
the individual tree in the final ensemble model.
Experiments were performed on 8 high dimensional

text datasets with dimensions ranging from 2000 to
13195. We compared the performance of eight random
forest methods and well-known classification methods:
C4.5 random forest, CART random forest, CHAID
random forest, hybrid random forest, C4.5 weighted
random forest, CART weighted random forest, CHAID
weighted random forest, hybrid weighted random
forest, support vector machines [18], naive Bayes [19],
and k-nearest neighbors [20]. The experimental
results show that our hybrid weighted random forest
achieves improved classification performance over the
ten competitive methods.
The remainder of this paper is organized as follows.

In Section 2, we introduce a framework for building
a hybrid weighted random forest, and describe a new
random forest algorithm. Section 3 summarizes four
measures to evaluate random forest models. We present
experimental results on 8 high dimensional text datasets
in Section 4. Section 5 contains our conclusions.

2. HYBRID WEIGHTED RANDOM
FORESTS

In this section, we first introduce a feature weighting
method for subspace sampling. Then we present a

TABLE 1. Contingency table of input feature A and class
feature Y

Y = y1 . . . Y = yj . . . Y = yq Total

A = a1 σ11 . . . σ1j . . . σ1q σ1·
...

... . . .
...

...
...

...

A = ai σi1 . . . σij . . . σiq σi·
...

... . . .
...

...
...

...

A = ap σp1 . . . σpj . . . σpq σp·

Total σ·1 . . . σ·j . . . σ·q σ

general framework for building hybrid random forests.
By integrating these two methods, we propose a novel
hybrid weighted random forest algorithm.

2.1. Notation

Let Y be the class (or target) feature with q distinct
class labels yj for j = 1, · · · , q. For the purposes of
our discussion we consider a single categorical feature
A in dataset D with p distinct category values. We
denote the distinct values by ai for i = 1, · · · , p.
Numeric features can be discretized into p intervals with
a supervised discretization method.

Assume D has val objects. The size of the subset of
D satisfying the condition that A = ai and Y = yj is
denoted by σij . Considering all combinations of the
categorical values of A and the labels of Y , we can
obtain a contingency table [21] of A against Y as shown
in Table 1. The far right column contains the marginal
totals for feature A:

σi. =

q∑
j=1

σij for i = 1, · · · , p (1)

and the bottom row is the marginal totals for class
feature Y :

σ.j =

p∑
i=1

σij for j = 1, · · · , q (2)

The grand total (the total number of samples) is in
the bottom right corner:

σ =

q∑
j=1

p∑
i=1

σij (3)

Given a training dataset D and feature A we first
compute the contingency table. The feature weights are
then computed using the two methods to be discussed
in the following subsection.

2.2. Feature Weighting Method

In this subsection, we give the details of the feature
weighting method for subspace sampling in random
forests. Consider an M-dimensional feature space
{A1, A2, . . . , AM}. We present how to compute the
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weights {w1, w2, . . . , wM} for every feature in the space.
These weights are then used in the improved algorithm
to grow each decision tree in the random forest.

2.2.1. Feature Weight Computation
The weight of feature A represents the correlation
between the values of feature A and the values of the
class feature Y . A larger weight will indicate that the
class labels of objects in the training dataset are more
correlated with the values of feature A, indicating that
A is more informative to the class of objects. Thus it
is suggested that A has a stronger power in predicting
the classes of new objects.
In the following, we propose to use the chi-square

statistic to compute feature weights because this
method can quantify the correspondence between two
categorical variables.
Given the contingency table of an input feature A and

the class feature Y of dataset D, the chi-square statistic
of the two features is computed as:

corr(A, Y ) =

p∑
i=1

q∑
j=1

(σij − tij)
2

tij
(4)

where σij is the observed frequency from the
contingency table and tij is the expected frequency
computed as

tij =
σi· × σ·j

σ
(5)

The larger the measure corr(A, Y ), the more
informative the feature A is in predicting class Y .

2.2.2. Normalized Feature Weight
In practice, feature weights are normalized for feature
subspace sampling. We use corr(A, Y ) to measure the
informativeness of these features and consider them
as feature weights. However, to treat the weights as
probabilities of features, we normalize the measures to
ensure the sum of the normalized feature weights is
equal to 1. Let corr(Ai, Y ) (1 ≤ i ≤ M) be the set
of M feature measures. We compute the normalized
weights as

wi =

√
corr(Ai, Y )∑N

i=1

√
corr(Ai, Y )

(6)

Here, we use the square root to smooth the values of
the measures. wi can be considered as the probability
that feature Ai is randomly sampled in a subspace. The
more informative a feature is, the larger the weight and
the higher the probability of the feature being selected.

2.3. Framework for Building a Hybrid Random
Forest

As an ensemble learner, the performance of a random
forest is highly dependent on two factors: the diversity
among the trees and the accuracy of each tree [11].

Diversity is commonly obtained by using bagging and
random subspace sampling. We introduce a further
element of diversity by using different types of trees.

Considering an analogy with forestry, the differen-
t data subsets from bagging represent the “soil struc-
tures.” Different decision tree algorithms represent “dif-
ferent tree species”. Our approach has two key aspects:
one is to use three types of decision tree algorithms to
generate three different tree classifiers for each train-
ing data subset; the other is to evaluate the accuracy
of each tree as the measure of tree importance. In this
paper, we use the out-of-bag accuracy to assess the im-
portance of a tree.

Following Breiman [1], we use bagging to generate
a series of training data subsets from which we build
trees. For each tree, the data subset used to grow
the tree is called the “in-of-bag” (IOB) data and the
remaining data subset is called the “out-of-bag” (OOB)
data. Since OOB data is not used for building trees
we can use this data to objectively evaluate each tree’s
accuracy and importance. The OOB accuracy gives an
unbiased estimate of the true accuracy of a model.

Given n instances in a training dataset D and a tree
classifier hk(IOBk) built from the k’th training data
subset IOBk, we define the OOB accuracy of the tree
hk(IOBk), for di ∈ D, as:

OOBAcck =

∑n
i=1 I(hk(di) = yi; di ∈ OOBk)∑n

i=1 I(di ∈ OOBk)
(7)

where I(.) is an indicator function. The larger the
OOBAcck, the better the classification quality of a tree.

We use the out-of-bag data subset OOBi to calculate
the out-of-bag accuracies of the three types of trees
(C4.5, CART and CHAID) with evaluation values E1,
E2 and E3 respectively.

Fig. 1 illustrates the procedure for building a hybrid
random forest model. Firstly, a series of IOB/OOB
datasets are generated from the entire training dataset
by bagging. Then, three types of tree classifiers (C4.5,
CART and CHAID) are built using each IOB dataset.
The corresponding OOB dataset is used to calculate the
OOB accuracies of the three tree classifiers. Finally,
we select the tree with the highest OOB accuracy as
the final tree classifier, which is included in the hybrid
random forest.

Building a hybrid random forest model in this
way will increase the diversity among the trees.
The classification performance of each individual tree
classifier is also maximized.

2.4. Decision Tree Algorithms

The core of our approach is the diversity of decision
tree algorithms in our random forest. Different decision
tree algorithms grow structurally different trees from
the same training data. Selecting a good decision tree
algorithm to grow trees for a random forest is critical
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FIGURE 1. The Hybrid Random Forests framework.

for the performance of the random forest. Few studies
have considered how different decision tree algorithms
affect a random forest. We do so in this paper.
The common decision tree algorithms are as follows:
Classification Trees 4.5 (C4.5) is a supervised

learning classification algorithm used to construct
decision trees. Given a set of pre-classified objects, each
described by a vector of attribute values, we construct
a mapping from attribute values to classes. C4.5 uses
a divide-and-conquer approach to grow decision trees.
Beginning with the entire dataset, a tree is constructed
by considering each predictor variable for dividing the
dataset. The best predictor is chosen at each node
using a impurity or diversity measure. The goal is
to produce subsets of the data which are homogeneous
with respect to the target variable. C4.5 selects the test
that maximizes the information gain ratio (IGR) [3].
Classification and Regression Tree (CART) is

a recursive partitioning method that can be used for
both regression and classification. The main difference
between C4.5 and CART is the test selection and
evaluation process.
Chi-squared Automatic Interaction Detector

(CHAID) method is based on the chi-square test of
association. A CHAID decision tree is constructed
by repeatedly splitting subsets of the space into two
or more nodes. To determine the best split at any
node, any allowable pair of categories of the predictor
variables is merged until there is no statistically
significant difference within the pair with respect to the
target variable [16, 17].
From these decision tree algorithms, we can see that

the difference lies in the way to split a node, such
as the split functions and binary branches or multi-
branches. In this work we use these different decision
tree algorithms to build a hybrid random forest.

2.5. Hybrid Weighted Random Forest Algo-
rithm

In this subsection we present a hybrid weighted
random forest algorithm by simultaneously using the
feature weights and a hybrid method to classify high
dimensional data. The benefits of our algorithm has
two aspects: Firstly, compared with hybrid forest
method [15], we can use a small subspace size to
create accurate random forest models. Secondly,
compared with building a random forest using feature
weighting [14], we can use several different types of
decision trees for each training data subset to increase
the diversities of trees. The added diversity of the
decision trees can effectively improve the classification
performance of the ensemble model. The detailed steps
are introduced in Algorithm 1.

Input parameters to Algorithm 1 include a training
dataset D, the set of features A, the class feature Y ,
the number of trees in the random forest K and the
size of subspaces m. The output is a random forest
model M . Lines 9–16 form the loop for building K
decision trees. In the loop, Line 10 samples the training
data D by sampling with replacement to generate an
in-of-bag data subset IOBi for building a decision tree.
Line 11–14 build three types of tree classifiers (C4.5,
CART, and CHAID). In this procedure, Line 12 calls
the function createTreej() to build a tree classifier.
Line 13 calculates the out-of-bag accuracy of the tree
classifier. After this procedure, Line 15 selects the tree
classifier with the maximum out-of-bag accuracy. K
decision tree trees are thus generated to form a hybrid
weighted random forest model M .

Generically, function createTreej() first creates a
new node. Then, it tests the stopping criteria to decide
whether to return to the upper node or to split this
node. If we choose to split this node, then the feature
weighting method is used to randomly select m features
as the subspace for node splitting. These features
are used as candidates to generate the best split to
partition the node. For each subset of the partition,
createTreej() is called again to create a new node under
the current node. If a leaf node is created, it returns to
the parent node. This recursive process continues until
a full tree is generated.
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Algorithm 1 New Random Forest Algorithm

1: Input:
2: - D : the training dataset,
3: - A : the features space {A1, A2, ..., AM},
4: - Y : the class features space {y1, y2, ..., yq},
5: - K : the number of trees,
6: - m : the size of subspaces.
7: Output: A random forest M ;
8: Method:
9: for i = 1 to K do

10: draw a bootstrap sample in-of-bag data subset
IOBi and out-of-bag data subset OOBi from
training dataset D;

11: for j = 1 to 3 do
12: hi,j(IOBi) = createTreej();
13: use out-of-bag data subset OOBi to calculate

the out-of-bag accuracy OOBAcci, j of the tree
classifier hi,j(IOBi) by Equation(1);

14: end for
15: select hi(IOBi) with the highest out-of-bag

accuracy OOBAcci as Optimal tree i;
16: end for
17: combine the K tree classifiers

h1(IOB1), h2(IOB2), ..., hK(IOBK) into a random
forest M ;

18:

19: Function createTree()
20: create a new node N ;
21: if stopping criteria is met then
22: return N as a leaf node;
23: else
24: for j = 1 to M do
25: compute the informativeness measure

corr(Aj , Y ) by Equation (4);
26: end for
27: compute feature weights {w1, w2, ..., wM} by

Equation (6);
28: use the feature weighting method to randomly

select m features;
29: use these m features as candidates to generate

the best split for the node to be partitioned;
30: call createTree() for each split;
31: end if
32: return N ;

3. EVALUATION MEASURES

In this paper, we use five measures, i.e., strength,
correlation, error bound c/s2, test accuracy, and F1
metric, to evaluate our random forest models. Strength
measures the collective performance of individual trees
in a random forest and the correlation measures the
diversity of the trees. The ratio of the correlation
over the square of the strength c/s2 indicates the
generalization error bound of the random forest model.
These three measures were introduced in [1]. The
accuracy measures the performance of a random forest
model on unseen test data. The F1 metric is a

commonly used measure of classification performance.

3.1. Strength and Correlation Measures

We follow Breiman’s method described in [1] to
calculate the strength, correlation and the ratio c/s2.
Following Breiman’s notation, we denote strength as
s and correlation as ρ̄. Let hk(IOBk) be the kth
tree classifier grown from the kth training data IOBk

sampled from D with replacement. Assume the
random forest model contains K trees. The out-of-bag
proportion of votes for di ∈ D on class j is

Q(di, j) =

∑K
k=1 I(hk(di) = j; di /∈ IOBk)∑K

k=1 I(di /∈ IOBk)
(8)

This is the number of trees in the random forest
which are trained without di and classify di into class
j, divided by the number of training datasets not
containing di.

The strength s is computed as:

s =
1

n

n∑
i=1

(Q(di, yi)−maxj ̸=yiQ(di, j)) (9)

where n is the number of objects in D and yi indicates
the true class of di.

The correlation ρ̄ is computed as:

ρ̄ =
1
n

∑n
i=1(Q(di, yi)−maxj ̸=yiQ(di, j))

2 − s2

( 1
K

∑K
k=1

√
pk + p̄k + (pk − p̄k)2)2

(10)

where

pk =

∑n
i=1 I(hk(di) = yi; di /∈ IOBk)∑n

i=1 I(di /∈ IOBk)
(11)

and

p̄k =

∑n
i=1 I(hk(di) = ĵ(di, Y ); di /∈ IOBk)∑n

i=1 I(di /∈ IOBk)
(12)

where
ĵ(di, Y ) = argmaxj ̸=yiQ(d, j) (13)

is the class that obtains the maximal number of votes
among all classes but the true class.

3.2. General Error Bound Measure c/s2

Given the strength and correlation, the out-of-bag
estimate of the c/s2 measure can be computed.

An important theoretical result in Breiman’s method
is the upper bound of the generalization error of the
random forest ensemble that is derived as

PE∗ ≤ ρ(1− s2)/s2 (14)

where ρ̄ is the mean value of correlations between all
pairs of individual classifiers and s is the strength of
the set of individual classifiers that is estimated as the
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average accuracy of individual classifiers on D with
out-of-bag evaluation. This inequality shows that the
generalization error of a random forest is affected by
the strength of individual classifiers and their mutual
correlations. Therefore, Breiman defined the c/s2 ratio
to measure a random forest as

c/s2 = ρ̄/s2 (15)

The smaller the ratio, the better the performance of
the random forest. As such, c/s2 gives guidance for
reducing the generalization error of random forests.

3.3. Test Accuracy

The test accuracy measures the classification perfor-
mance of a random forest on the test data set. Let
Dt be a test data and Yt be the class labels. Given
di ∈ Dt, the number of votes for di on class j is

N(di, j) =

K∑
k=1

I(hk(di) = j) (16)

The test accuracy is calculated as

Acc =
1

n

n∑
i=1

I(N(di, yi)−maxj ̸=yiN(di, j) > 0) (17)

where n is the number of objects in Dt and yi indicates
the true class of di.

3.4. F1 Metric

To evaluate the performance of classification methods
in dealing with an unbalanced class distribution, we use
the F1 metric introduced by Yang and Liu [22]. This
measure is equal to the harmonic mean of recall (α)
and precision (β). The overall F1 score of the entire
classification problem can be computed by a micro-
average and a macro-average.
Micro-averaged F1 is computed globally over all

classes, and emphasizes the performance of a classifier
on common classes. Define α and β as follows:

α =

∑q
i=1 TPi∑q

i=1(TPi + FPi)
, β =

∑q
i=1 TPi∑q

i=1(TPi + FNi)
(18)

where q is the number of classes. TPi (True Positives)
is the number of objects correctly predicted as class i,
FPi (False Positives) is the number of objects that are
predicted to belong to class i but do not. The micro-
averaged F1 is computed as:

MicroF1 =
2αβ

α+ β
(19)

Macro-averaged F1 is first computed locally over
each class, and then the average over all classes is taken.

TABLE 2. Summary statistic of 8 high-dimensional
datasets
Name Features Instances Classes % Minority

Fbis 2000 2463 17 1.54

Re0 2886 1504 13 0.73

Re1 3758 1657 25 0.6

Tr41 7454 878 10 1.03

Wap 8460 1560 20 0.32

Tr31 10,128 927 7 0.22

La2s 12,432 3075 6 8.07

La1s 13,195 3204 6 8.52

It emphasizes the performance of a classifier on rare
categories. Define α and β as follows:

αi =
TPi

(TPi + FPi)
, βi =

TPi

(TPi + FNi)
(20)

F1 for each category i and the macro-averaged F1
are computed as:

F1i =
2αiβi

αi + βi
, MacroF1 =

∑q
i=1 F1i
q

(21)

The larger the MicroF1 and MacroF1 values are, the
higher the classification performance of the classifier.

4. EXPERIMENTS

In this section, we present two experiments that
demonstrate the effectiveness of the new random
forest algorithm for classifying high dimensional data.
High dimensional datasets with various sizes and
characteristics were used in the experiments. The
first experiment is designed to show how our proposed
method can reduce the generalization error bound
c/s2, and improve test accuracy when the size of
the selected subspace is not too large. The second
experiment is used to demonstrate the classification
performance of our proposed method in comparison to
other classification methods, i.e. SVM, NB and KNN.

4.1. Datasets

In the experiments, we used eight real-world high
dimensional datasets. These datasets were selected
due to their diversities in the number of features, the
number of instances, and the number of classes. Their
dimensionalities vary from 2000 to 13,195. Instances
vary from 878 to 3204 and the minority class rate varies
from 0.22% to 8.52%. In each dataset, we randomly
select 70% of instances as the training dataset, and
the remaining data as the test dataset. Detailed
information of the eight datasets is listed in Table 2.

The Fbis, Re0, Re1, Tr41, Wap, Tr31, La2s
and La1s datasets are classical text classification
benchmark datasets which were carefully selected and
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preprocessed by Han and Karypis [23]. Dataset Fbis
was compiled from the Foreign Broadcast Information
Service TREC-5 [24]. The datasets Re0 and Re1 were
selected from the Reuters-21578 text categorization test
collection Distribution 1.0 [25]. The datasets Tr41 and
Tr31 were derived from TREC-5 [24], TREC-6 [24],
and TREC-7 [24]. Dataset Wap is from the WebACE
project (WAP) [26]. The datasets La2s and La1s were
selected from the Los Angeles Times for TREC-5 [24].
The classes of these datasets were generated from the
relevance judgment provided in these collections.

4.2. Performance Comparisons between Ran-
dom Forest Methods

The purpose of this experiment was to evaluate
the effect of the hybrid weighted random forest
method (H W RF) on strength, correlation, c/s2,
and test accuracy. The eight high dimensional
datasets were analyzed and results were compared
with seven other random forest methods, i.e., C4.5
random forest (C4.5 RF), CART random forest
(CART RF), CHAID random forest (CHAID RF),
hybrid random forest (H RF), C4.5 weighted random
forest (C4.5 W RF), CART weighted random forest
(CART W RF), CHAID weighted random forest
(CHAID W RF). For each dataset, we ran each
random forest algorithm against different sizes of the
feature subspaces. Since the number of features in these
datasets was very large, we started with a subspace
of 10 features and increased the subspace by 5 more
features each time. For a given subspace size, we built
100 trees for each random forest model. In order to
obtain a stable result, we built 80 random forest models
for each subspace size, each dataset and each algorithm,
and computed the average values of the four measures
of strength, correlation, c/s2, and test accuracy as the
final results for comparison. The performance of the
eight random forest algorithms on the four measures
for each of the 8 datasets is shown in Figs. 2, 3, 4, and
5.
Fig. 2 plots the strength for the eight methods against

different subspace sizes on each of the 8 datasets.
In the same subspace, the higher the strength, the
better the result. From the curves, we can see that
the new algorithm (H W RF) consistently performs
better than the seven other random forest algorithms.
The advantages are more obvious for small subspaces.
The new algorithm quickly achieved higher strength
as the subspace size increases. The seven other
random forest algorithms require larger subspaces to
achieve a higher strength. These results indicate that
the hybrid weighted random forest algorithm enables
random forest models to achieve a higher strength
for small subspace sizes compared to the seven other
random forest algorithms.
Fig. 3 plots the curves for the correlations for the

eight random forest methods on the 8 datasets. For

small subspace sizes, H RF, C4.5 RF, CART RF,
and CHAID RF produce higher correlations between
the trees on all datasets. The correlation decreases
as the subspace size increases. For the random forest
models the lower the correlation between the trees
then the better the final model. With our new
random forest algorithm (H W RF) a low correlation
level was achieved with very small subspaces in all
8 datasets. We also note that as the subspace size
increased the correlation level increased as well. This is
understandable because as the subspace size increases,
the same informative features are more likely to be
selected repeatedly in the subspaces, increasing the
similarity of the decision trees. Therefore, the feature
weighting method for subspace selection works well for
small subspaces, at least from the point of view of the
correlation measure.

Fig. 4 shows the error bound indicator c/s2 for the
eight methods on the 8 datasets. From these figures
we can observe that as the subspace size increases, c/s2

consistently reduces. The behaviour indicates that a
subspace size larger than ⌊log2(M)+1⌋ benefits all eight
algorithms. However, the new algorithm (H W RF)
achieved a lower level of c/s2 at subspace size of
⌊log2(M) + 1⌋ than the seven other algorithms.

Fig. 5 plots the curves showing the accuracy of the
eight random forest models on the test datasets from
the 8 datasets. We can clearly see that the new random
forest algorithm (H W RF) outperforms the seven
other random forest algorithms in all eight data sets.
It can be seen that the new method is more stable
in classification performance than other methods. In
all of these figures, it is observed that the highest test
accuracy is often obtained with the default subspace size
of ⌊log2(M) + 1⌋. This implies that in practice, large
size subspaces are not necessary to grow high-quality
trees for random forests.

4.3. Performance Comparisons with Other
Classification Methods

We conducted a further experimental comparison
against three other widely used text classification
methods: support vector machines (SVM), Naive
Bayes (NB), and k-nearest neighbor (KNN). The
support vector machine used a linear Kernel with a
regularization parameter of 0.03125, which was often
used in text categorization. For Naive Bayes, we
adopted the multi-variate Bernoulli event model that
is frequently used in text classification [27]. For k-
nearest neighbor (KNN), we set the number k of
neighbors to 13. In the experiments, we used WEKA’s
implementation for these three text classification
methods [28]. We used a single subspace size of
features in all eight datasets to run the random forest
algorithms. For H RF, C4.5 RF, CART RF, and
CHAID RF, we used a subspace size of 90 features in
the first 6 datasets (i.e., Fbis, Re0, Re1, Tr41, Wap, and
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FIGURE 2. Strength changes against the number of features in the subspace on the 8 high dimensional datasets

Tr31) to run the random forest algorithms, and used
a subspace size of 120 features in the last 2 datasets
(La2s and La1s) to run these random forest algorithms.
For H W RF, C4.5 W RF, CART W RF, and
CHAID W RF, we used Breiman’s subspace size of

⌊log2(M) + 1⌋ to run these random forest algorithms.
This number of features provided a consistent result as
shown in Fig. 5. In order to obtain stable results, we
built 20 random forest models for each random forest
algorithm and each dataset and present the average
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FIGURE 3. Correlation changes against the number of features in the subspace on the 8 high dimensional datasets

results, noting that the range of values are less than
±0.005 and the hybrid trees are always more accurate.

The comparison results of classification performance
of eleven methods are shown in Table 3. The
performance is estimated using test accuracy (Acc),

Micro F1 (Mic), and Macro F1 (Mac). Boldface
denotes best results between eleven classification
methods. While the improvement is often quite
small, there is always an improvement demonstrated.
We observe that our proposed method (H W RF)
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FIGURE 4. c/s2 changes against the number of features in the subspace on the 8 high dimensional datasets

outperformed the other classification methods in all
datasets.

5. CONCLUSIONS

In this paper, we presented a hybrid weighted random
forest algorithm by simultaneously using a feature
weighting method and a hybrid forest method to classify
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FIGURE 5. Test Accuracy changes against the number of features in the subspace on the 8 high dimensional datasets

high dimensional data. Our algorithm not only retains
a small subspace size (Breiman’s formula ⌊log2(M)+1⌋
for determining the subspace size) to create accurate
random forest models, but also effectively reduces
the upper bound of the generalization error and

improves classification performance. From the results of
experiments on various high dimensional datasets, the
random forest generated by our new method is superior
to other classification methods. We can use the default
⌊log2(M) + 1⌋ subspace size and generally guarantee
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TABLE 3. The comparison of results (best accuracy, Micro F1, and Macro F1 results) of the eleven methods on the 8
datasets

Dataset Fbis Re0 Re1 Tr41
Measures Acc Mic Mac Acc Mic Mac Acc Mic Mac Acc Mic Mac

SVM 0.834 0.799 0.76 0.804 0.795 0.756 0.829 0.826 0.706 0.95 0.915 0.87

KNN 0.78 0.752 0.722 0.779 0.752 0.752 0.788 0.668 0.638 0.915 0.813 0.765

NB 0.776 0.74 0.706 0.784 0.741 0.619 0.816 0.732 0.58 0.935 0.856 0.782

H RF 0.853 0.816 0.816 0.845 0.82 0.82 0.841 0.832 0.8 0.953 0.926 0.895

C4.5 RF 0.836 0.806 0.806 0.836 0.802 0.802 0.825 0.811 0.781 0.948 0.92 0.89

CART RF 0.829 0.797 0.787 0.826 0.798 0.798 0.825 0.808 0.783 0.917 0.891 0.88

CHAID RF 0.842 0.805 0.805 0.832 0.8 0.8 0.838 0.815 0.795 0.926 0.903 0.88

H W RF 0.856 0.825 0.82 0.855 0.825 0.822 0.848 0.836 0.81 0.953 0.926 0.895

C4.5 W RF 0.841 0.809 0.815 0.845 0.815 0.812 0.838 0.826 0.795 0.95 0.922 0.892

CART W RF 0.835 0.805 0.81 0.839 0.81 0.805 0.835 0.818 0.79 0.935 0.91 0.88

CHAID W RF 0.839 0.815 0.812 0.842 0.812 0.815 0.84 0.83 0.8 0.942 0.915 0.88

Dataset Wap Tr31 la2s la1s
Measures Acc Mic Mac Acc Mic Mac Acc Mic Mac Acc Mic Mac

SVM 0.81 0.772 0.663 0.955 0.907 0.87 0.89 0.832 0.807 0.875 0.82 0.803

KNN 0.752 0.622 0.622 0.905 0.82 0.762 0.841 0.805 0.786 0.827 0.798 0.761

NB 0.797 0.742 0.559 0.925 0.832 0.81 0.896 0.815 0.79 0.87 0.802 0.775

H RF 0.815 0.805 0.735 0.965 0.925 0.88 0.89 0.84 0.82 0.862 0.825 0.805

C4.5 RF 0.797 0.795 0.732 0.962 0.902 0.87 0.878 0.83 0.81 0.855 0.82 0.798

CART RF 0.793 0.793 0.73 0.958 0.892 0.86 0.882 0.832 0.81 0.84 0.815 0.792

CHAID RF 0.805 0.805 0.732 0.96 0.9 0.852 0.88 0.83 0.803 0.845 0.816 0.795

H W RF 0.815 0.805 0.735 0.965 0.925 0.88 0.896 0.848 0.825 0.875 0.836 0.82

C4.5 W RF 0.805 0.795 0.732 0.962 0.911 0.87 0.886 0.835 0.816 0.866 0.825 0.81

CART W RF 0.8 0.792 0.73 0.96 0.902 0.865 0.887 0.835 0.812 0.87 0.825 0.81

CHAID W RF 0.811 0.795 0.73 0.96 0.905 0.855 0.887 0.833 0.81 0.865 0.825 0.805

to always produce the best models, on a variety of
measures, by using the hybrid weighted random forest
algorithm.

ACKNOWLEDGEMENTS

This research is supported in part by NSFC under
Grant NO.61073195, and Shenzhen New Industry De-
velopment Fund under Grant NO.CXB201005250021A

REFERENCES

[1] Breiman, L. (2001) Random forests. Machine learning,
45, 5–32.

[2] Ho, T. (1998) Random subspace method for construct-
ing decision forests. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20, 832–844.

[3] Quinlan, J. (1993) C4.5: Programs for machine
learning. Morgan Kaufmann.

[4] Breiman, L. (1984) Classification and regression trees.
Chapman & Hall/CRC.

[5] Breiman, L. (1996) Bagging predictors. Machine
learning, 24, 123–140.

[6] Ho, T. (1995) Random decision forests. Proceedings
of the Third International Conference on Document
Analysis and Recognition, pp. 278–282. IEEE.

[7] Dietterich, T. (2000) An experimental comparison of
three methods for constructing ensembles of decision
trees: Bagging, boosting, and randomization. Machine
learning, 40, 139–157.

[8] Banfield, R., Hall, L., Bowyer, K., and Kegelmeyer, W.
(2007) A comparison of decision tree ensemble creation
techniques. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 29, 173–180.
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