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1. INTRODUCTION

One of the major current challenges to many 
classical classification algorithms is dealing 

with large high dimensional data. Examples 
include text data, microarray data and digital 
images which often have thousands of features 
and hundreds of thousands or millions of objects. 
Such very high dimensional data has two special 
characteristics that affect the performance of 
classification algorithms. One is that different 
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classes of objects are present in subspaces of 
the data dimensions. For example, in text data, 
documents relating to sport are categorized by 
the key words describing sport, while documents 
relating to music are represented by the key 
words describing music. The other characteristic 
is that a large number of dimensional features 
are uninformative to the class feature. That 
is, many features are only weakly correlated 
to the class feature, if at all and have a low 
power in predicting object classes (Saxena & 
Wang, 2010).

The random forest (Breiman, 2001) algo-
rithm is a popular classification method used to 
build ensemble models of decision trees from 
subspaces of data. Experimental results have 
shown that random forest models can achieve 
high accuracy in classifying high dimensional 
data (Banfield et al., 2007). Interest in random 
forests has grown in many domains where high 
dimensional data is prominent, including do-
mains such as bioinformatics (Pang et al., 2006; 
Diaz-Uriarte & De Andres, 2006; Chen & Liu, 
2005; Bureau et al., 2005), medical data mining 
(Ward et al., 2006) and image classification 
(Bosch, Zisserman, & Muoz, 2007).

Several methods have been proposed to 
build random forest models from subspaces of 
data (Breiman, 2001; Ho, 1995, 1998; Dietter-
ich, 2000). Among them, Breiman’s method 
(Breiman, 2001) has been popular due to its 
good performance compared to other methods 
(Banfield, Hall, Bowyer, & Kegelmeyer, 2007). 
Breiman uses a simple random sampling from 
all the available features to select subspaces 
when growing unpruned trees within the random 
forest model. Breiman suggested selecting 
log ( )2 1M +   features in a subspace, where 

M is the total of independent features in data. 
This works well for data with certain dimensions 
(e.g., less than 100 features) but is not suitable 
for very high dimensional data consisting of 
thousands of features. In contrast, for very high 
dimensional data, Breiman’s subspace size of 
log ( )2 1M +   is too small. Such data are 

dominated by uninformative features which 
have very low predictive power with respect to 
the target classification. Using a simple random 

sampling results in informative features not 
being included in subspaces (Amaratunga, 
Cabrera, & Lee, 2008). As a result, weak trees 
are created and classification performance of 
the random forest is significantly affected. To 
increase the chance of selecting informative 
features in subspaces, the subspace size has to 
be enlarged extensively. However, this in-
creases the computational requirements of the 
algorithm and increases the likelihood of the 
resulting trees being correlated. Correlated trees 
reduce the classification performance of a 
random forest model (Breiman, 2001).

To address this problem Amaratunga 
(Amaratunga, Cabrera, & Lee, 2008) proposed a 
feature weighted method for subspace sampling. 
The weight of a feature is computed with respect 
to the correlation between the feature and the 
class. The weights are treated as the probability 
with which a feature is selected for inclusion in 
a subspace. Using this feature weighted method 
to sample subspaces there is a high chance that 
informative features are selected when growing 
trees for a random forest model. This method 
might be compared to the method of Adaboost 
(Freund & Schapire, 1996; Qiu, Wang, & Bi, 
2008) which selects training samples according 
to the sample weights computed from the result 
of the previous classification. Such a method 
increases the probability for selecting informa-
tive features for inclusion in each subspace. This 
results in an increase in the average strength of 
the trees making up the random forest model, and 
thus the generalization error bound is reduced. 
Consequently, classification performance of the 
random forest model is increased.

Amaratunga’s method is only valid for 
two-class problems, using the t-test of variance 
analysis to calculate the feature weights. In this 
paper, we propose a feature weighting method 
for subspace selection to solve multi-class 
problems. Instead of the t-test we calculate the 
chi-square statistic or information gain ratio as 
the feature weights. Both measures capture the 
correlation between a feature and the class for 
multi-class problems. The larger the weight, 
the more informative the feature to the classi-
fication. We normalize the set of weights to 
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sum to 1 and treat the normalized weights as 
the probability of selecting a feature within a 
subspace. We then use weighted sampling to 
randomly select feature subspaces with a high 
chance of including informative features. In 
this way, we increase the classification accu-
racy of the random forest model without the 
need to increase the subspace size from Brei-
man’s log ( )2 1M +   (M is the total number of 
features in data).

Experiments were performed on 9 real life 
high dimensional datasets with dimensions 
ranging from 780 to 13195, and with the num-
ber of classes ranging from 2 to 25. The results 
demonstrate that with a subspace size of 
log ( )2 1M +   the random forest using feature 

weighting for subspace selection significantly 
outperforms the random forest models with 
simple random sampling. Classification ac-
curacy is increased by 19%, on average. The 
maximum increase was 56%.

A statistical analysis on the distributions 
of informative features in all subspaces of the 
random forest models was also conducted. The 
results reveal that the proportion of informa-
tive features in the subspaces selected with the 
feature weighting method was much higher 
than that in the subspaces selected with simple 
random sampling. This explains the effective-
ness of this new subspace selection method 
in improving classification performance of 
random forest models in high dimensional data.

Compared to using the t-test for feature 
weighting, the proposed method can be used to 
build random forest models from high dimen-
sional data with multiple classes, generalizing 
Amaratunga’s method and increasing its ap-
plicability. Our new feature weighting method 
for subspace selection can build more accurate 
random forest models than the original method 
proposed by Breiman without the need to in-
crease the size of the subspaces.

The idea of weighting features with chi-
square statistic was first used to detect search 
interfaces from hidden web pages with random 
forest in Ye et al. (2008). In that application, 
the form data of web pages represented in 
HTML was extracted with a web crawler. The 

web pages were classified into two classes, 
one containing a search window form and the 
other without a search window form. Features 
describing the forms in the pages were extracted 
from the HTML data. Chi-square statistic was 
computed to measure the correlation between 
a feature and the class label, and used as the 
weight of the feature. To generate multiple trees 
for random forest, the training data was sampled 
with replacement and multiple data subsets 
were created. In each sampled data, a subset of 
features was randomly selected with respect to 
the feature weights. The larger the weight of a 
feature, the more likely the feature was selected 
in the subsets of features. An existing decision 
tree algorithm was used to generate a random 
forest from the sample datasets. The results on 
small datasets with a couple of hundred features 
showed that there was no obvious advantage 
of this feature weighting method in classifica-
tion accuracy.

Further investigating the idea in Ye et al. 
(2008), in this paper, we study the random for-
est algorithm with feature weighting method 
for subspace selection in classifying very high 
dimensional data with thousands of features. In 
the new random forest algorithm, we calculate 
feature weight and use weighted sampling to 
randomly select features for subspaces at each 
node in building the individual trees. This 
feature weighted subspace selection method 
increases the randomness in growing the indi-
vidual trees and in the diversity of the component 
trees. Experimental results have shown that the 
effectiveness of random forest model with our 
new algorithm is obvious in classifying very 
high dimensional data.

This paper is organized as follows. In 
Section 2, we give a brief analysis of random 
forests on high dimensional data. In Section 3, 
we present the feature weighting method for 
subspace selection, and give a new random 
forest algorithm. Section 4 summarizes four 
measures to evaluate random forest models. 
We present experimental results on 9 real life 
high dimensional datasets in Section 5. Section 
6 contains our conclusions.
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2. RANDOM FORESTS FOR 
HIGH DIMENSIONAL DATA

Random forests are suitable for classification 
of large high dimensional data. The following 
advantages can be identified in comparison with 
other classification algorithms.

1.  As an ensemble model in which each com-
ponent classifier is built from a subspace 
of data it is capable of modeling classes in 
subspaces.

2.  Large datasets can be handled efficiently 
because of the use of decision tree induc-
tion to build the component classifiers.

3.  High dimensional data is well handled for 
multi-class tasks such as classifying text 
data which have many categories.

4.  The component classifiers within the en-
semble can be built in parallel in a distrib-
uted environment, significantly reducing 
the time for creating a random forest model 
from large data.

There are two general methods for the 
selection of subspaces of features when grow-
ing decision trees for random forest models. 
The first method proposed by Ho (1998) is to 
randomly sample a subset of features from the 
entire feature set. The sampled training data for 
the decision tree only contains the selected fea-
tures and the decision tree only considers these 
features as candidates for splitting nodes. With 
this method an existing decision tree algorithm 
can be directly used to build the individual 
component trees without modification.

The second method as proposed by Brei-
man (2001) is to sample both objects and fea-
tures from the entire training data. To create the 
training data for building a component decision 
tree we first randomly sample the objects from 
the full training dataset, often by sampling with 
replacement. To grow a tree from the sampled 
data, at each node we randomly sample the 
features to be used as the candidate features for 
splitting that specific node. This double sam-
pling method (objects and features) increases 
the randomness in growing the individual trees 

and in the diversity of the component trees. 
However, it requires a modification to the exist-
ing implementation of a decision tree algorithm 
to include the subspace sampling function for 
each node of the tree.

The size of the feature subspaces affects 
both the efficiency of building the random for-
est and the performance of the resulting model. 
Ho’s subspace approach uses half of the features 
in the dataset, while Breiman suggests selecting 
log ( )2 1M +   features in a subspace, where M 

is the number of independent features in the 
training dataset. Both sizes work well on data 
with a small number of features, where small 
might be less than 100 features. However, they 
both become problematic when the number of 
features might be in the hundreds or thousands. 
Such data are no longer rare in many application 
domains.

When presented with very high dimen-
sional data we often find that very many of the 
features are uninformative and the percentage 
of truly informative features is small. In such 
a circumstance Ho’s subspace size of half the 
number of features is too large. A considerable 
computational cost is incurred and the resulting 
decision trees will be highly correlated. In 
contrast, for very high dimensional data, Brei-
man’s subspace size of log ( )2 1M +   is too 
small. With a simple random sampling, select-
ing this few features will invariably result in 
few, and quite likely no, informative features 
being included in the subspace. This will result 
in many weak trees. According to Breiman’s 
generalization error bound indicator, increasing 
the correlation between trees or decreasing the 
strength of component trees will increase the 
generalization error bound of random forests.

Using simple random sampling for very 
high dimensional data degrades the performance 
of the individual decision trees (Amaratunga, 
Cabrera, & Lee, 2008). This is because almost 
all subspaces are likely to consist mostly (or 
completely) of uninformative features. To build 
decision trees with improved performance it is 
important to select subspaces containing more 
informative features.
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Amaratunga introduced a feature weighted 
method for subspace sampling instead of simple 
random sampling (Amaratunga, Cabrera, & 
Lee, 2008). In this method, a two-sample t-test 
between a feature and the class is used to score 
each feature. Informative features are scored 
high. The score is then used as the weight of 
the feature and considered as the probability 
for the feature to be selected. With this fea-
ture weighted sampling method, informative 
features have a higher chance to be selected in 
subspaces. However, many practical problems 
are multi-class and Amaratunga’s method can 
only be applied to data with two classes due to 
his use of the two-sample t-test to score features. 
To extend the concept to multi-class problems 
we propose a new feature weighting method 
leading to a new random forest algorithm.

3. FEATURE WEIGHTING FOR 
SUBSPACE SELECTION

In this section we present the feature weight-
ing method for subspace selection in random 
forests. We discuss the methods to calculate 
the feature weights from training data, and 
introduce an algorithm that uses the feature 
weighting method to sample subspaces in 
building a random forest. The algorithm is an 
extension to Breiman’s classical random forest 
algorithm for classification models.

3.1. Notation

Let Y be the class (the target feature) with q 
distinct class labels yj for j=1,…,q. For the 
purposes of our discussion we consider a 
single categoric feature A in dataset D with p 
distinct categoric values. We denote the distinct 
values by ai for i=1,…,p. Numeric features are 
discretized into p intervals with a supervised 
discretization method (Quinlan, 1996; Engle 
& Gangopadhyay, 2010).

Assume D has val objects. The size of the 
subset of D satisfying the condition that A=	
ai and Y=yj is denoted valij. Considering all 
combinations of the categoric values of A and 
the labels of Y, we can obtain a contingence	
table (Pearson, 1904) of A against Y as shown 
in Table 1. The far right column contains the 
marginal	totals	for	feature	A:

val vali ij
j

q

. =
=
∑
1

 for i	=	1,...,	p (1)

and the bottom row is the marginal	totals	for	
class	feature	Y:

val valj ij
i

p

. =
=
∑
1

 for j=1,…,q (2)

The grand	 total (the total number of 
samples) is in the bottom right corner:

val valij
i

p

j

q

=
==
∑∑
11

 (3)

Table	1.	Contingency	table	of	input	feature	A	and	class	feature	Y	

Y	=	y1 … Y	=	yj … Y	=	yq Total

A=	a1 val11 … val1j … val1q val1.
… … … … … … …

A	=	ai vali1 … valij … valiq vali.
… … … … … … …

A=	ap valp1 … valpj … valpq valp.
Total val.1 … val.j … val.q val
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Given a training dataset D and feature A 
we first compute the contingency table. The 
feature weights are then computed using the 
two methods discussed next.

3.2. Feature Weight Computation

The weight of feature A represents the correla-
tion between the values of feature A and the 
values of the class feature Y. A larger weight 
will indicate that the class labels of objects in 
the training dataset are more correlated with 
the values of feature A, indicating that A is 
more informative of the class of objects. Thus 
it is suggested that A has a stronger power in 
predicting the classes of new objects.

In the following we present two methods 
to compute feature weights: the chi-square	
statistic and the information	gain	ratio. These 
two methods can quantify the correspondence 
between two categoric variables.

3.2.1. Chi-Square Statistic

Given the contingency table of an input fea-
ture A and the class feature Y of dataset D, the 
chi-square	statistic (CS) of the two features is 
computed as:

corr AY
val t

tcs
ij ij

ijj

q

i

p

( , )
( )

=
−

==
∑∑

2

11

 (4)

Where valij is the observed frequency from 
the contingency table and tij	 is the expected 
frequency computed as

t
val val

valij
i j=
×. .  (5)

The larger the corrcs(A,Y) measure the 
more informative feature A is said to be of the 
class feature Y. This is thus a suitable weight 
to assign to feature A.

3.2.2. Information Gain Ratio

The information	gain	ratio (IGR) is a measure 
that is used when building a decision tree. The 

C4.5 algorithm (Quinlan, 1993) uses it to select 
a feature to split a node on as a tree is built. 
Consider again the contingency table for feature 
A and class feature Y of dataset D as given in 
Table 1. Given A we partition D into p subsets 
with the objects in each subset having a com-
mon value of (A=ai). The information measure 
of the dataset D is

Info D
val

val

val

val
j

j

q
j( ) log ( ). .= − ×

=
∑
1

2  (6)

Info(D) measures the class purity in D. A 
small Info(D) indicates that there is one domi-
nant class in D while a large Info(D) indicates 
that there is an even distribution of classes in D.

The information measure of a subset DA ai=
is

Info D
val

val

val

valA a
ij

ij

q
ij

i
i

( ) log ( )
. .

=
=

= − ×∑
1

2  

(7)

The weighted sum of the information en-
tropy for all subsets based on A is then

Info D
val

val
Info DA

i

i

p

A ai
( ) ( ).= − ×

=
=∑

1

 

(8)

InfoA(D) measures the average class purity 
of all subsets of D partitioned by A. The smaller 
the measure is, the better the partition of D by 
A from the view point of predicting the class 
Y using feature A.

The difference between Info(D) and 
InfoA(D) is called information gain and is 
computed as

Gain A Info D Info DA( ) ( ) ( )= −  (9)

The larger the measure Gain(A) the more 
informative the feature A is in predicting the 
class Y.

Given the partition of D by A, the split 
information measure on A is defined as
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SplitInfo A
val

val

val

val
i

i

p
i( ) log ( ). .= − ×

=
∑
1

2  

(10)

The information	gain	ratio is defined as

corr AY
Gain A
SplitInfo AIGR( , )

( )
( )

=  (11)

The larger the measure corrIGR(A,Y), the 
more informative the feature A is in predicting 
class Y. Therefore, IGR is another measure of 
the informativeness of features.

3.2.3. Normalized Feature Weight

Given a high dimensional dataset D with q 
classes and M features A1,	A2,…,	AM, we can 
use either corrcs(A,Y) or corrIGR(A,Y) to measure 
the informativeness of these features and con-
sider them as feature weights. However, to treat 
the weights as probabilities of features we 
normalize the measures, to ensure the sum of 
the normalized feature weights is equal to 1. 
Let corr(Ai,Y) (1≤ ≤i M ) be the set of M 
feature measures. We compute the normalized 
weights as

w
corr A Y

corr A Y
i

i

ii

M
=

=∑
( , )

( , )
1

 (12)

where corr(Ai,Y) can be either the CS measure 
or the IGR measure on Ai. Here, we use the 
square root to smooth the values of the measures. 
wi can be considered as the probability that 
feature Ai is randomly sampled in a subspace. 
The more informative a feature is, the larger 
the weight and the higher the probability the 
feature is selected.

3.3. Algorithm

Using the feature weighting method to select 
a subspace at each node as we build a decision 
tree, we can modify Breiman’s original random 
forest algorithm (Breiman, 2001). The new 
algorithm is summarized as Algorithm 1.

Input parameters to Algorithm 1 include 
a training dataset D, the set of features A, the 
class feature Y, the number of trees in the ran-
dom forest K and the size of subspaces m. The 
output is a random forest model μ. Lines 10-13 
form the loop for building K decision trees. In 
the loop, Line 11 samples the training data D 
by sampling with replacement to generate a 
dataset for building a decision tree. Line 12 
calls function createTree() to build a tree clas-
sifier. After the loop, K decision trees are 
generated to form a random forest model μ.

Function createTree() is defined in Lines 
17-19. This function simply calls the recursive 
function createNode() to build a tree classifier.

Function createNode() is defined in Lines 
21 through 34. It first creates a new node η. It 
then tests the stopping criteria to decide whether 
to return or to split this node. If it chooses 
to split this node, then the feature weighting 
method is used to randomly select m features 
as the subspace for node splitting. These fea-
tures are used as candidates to generate the best 
split to partition the node. For each subset of 
the partition, createNode() is called again to 
create a new node under the current node. If 
a leaf node is created, it returns to the parent 
node. This recursive process continues until a 
full tree is generated.

Compared with Breiman’s method, the 
only change is the way in which we select the 
feature subspace at each node. Breiman uses a 
simple random sampling method. For very high 
dimensional data, the subspace size must be 
large enough in order to include informative 
features. As we highlighted above, this will 
increase the computation burden. With our ap-
proach we can still use Breiman’s formula 
log ( )2 1M +   to specify the subspace size and 

create a good random forest model.

4. EVALUATION MEASURES

We use the tree strength and correlation, the 
generalization error bound and the accuracy as 
measures to evaluate our random forest models. 
The tree strength measures the collective per-
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formance of individual trees in a random forest 
and the correlation measures the diversity of the 
trees. The ratio of the correlation over the square 
of the strength c/s2 indicates the generalization 
error bound of the random forest model. These 
three measures were introduced in (Breiman, 
2001). The accuracy measures the performance 
of a random forest model on unseen test data.

We follow Breiman’s method described in 
Breiman (2001) to calculate the strength, cor-
relation and c/s2. Here, s denotes the strength. 
Let ρ  denote correlation. Let hk(Dk) be the kth 
tree classifier grown from the kth training data 
Dk sampled from D with replacement. Assume 
the random forest model contains K trees. The 

out-of-bag proportion of votes for di∈D on class 
j is

Q d j
I h d j d D

I d D
i

k i i kk

K

i kk

K
,

( ) ,

( )
( ) =

= ∉( )
∉

=

=

∑
∑
1

1

 

(13)

where Q(di,	 j) is the number of trees in the 
random forest which are trained without di and 
classify di into class j, divided by the number 
of training datasets not containing di.

The strength s is computed as:

Algorithm	1.	New	random	forest	algorithm	

1: Input:
2: - D: the training data set,
3: - A: the feature space {A1,	A2,...,AM},
4: - Y: the feature space {y1,	y2,...,yq},
5: - K: the number of trees,
6: - m: the size of subspaces.
7: 
8: Output: A random forest μ
9: Method:
10: for i=1 to K do
11:       draw a bootstrap sample Di from training dataset D;
12:       hi(Di)	= createTree(Di);
13: end for
14: combine the K tree classifiers h1(D1),	h2(D2),…,	hK(DK) into a random forest μ;
15: // This completes the building of the random forest model
16: 
17: Function createTree() 
18: rootNode = createNode(); 
19: return rootNode; 
20: 
21: Function createNode() 
22: create a new node η;
23: if stopping criteria is met then
24:     return η as a leaf node;
25: else
26:     for j=1	to	M do
27:           compute the informativeness measure corr(Aj,Y) by Equation (4) or (11);
28:      end for
29:      compute feature weights {w1,	w2,...,wM} by Equation (12);
30:      use the feature weighting method to randomly select m features;
31:      use these m feature as candidates to generate the best split for the node to be partitioned;
32:      call createNode() for each split; 
33: end if
34: return η;
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where n is the number of objects in D and yi 
indicates the true class of di.
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where

(̂ , ) argmax ( , )j d Y Q d ji j yi
= ≠  (18)

is estimated for every instance d in the training 
set with Q(d,	j).

The generalization error bound indicator 
c/s2 is computed as:

c s
s

2
2= ρ  (19)

where c/s2 gives a direction for reducing the 
generalization error of random forest models: 
the smaller that c/s2 is the more accurate the 
random forest model will be.

Let Dt be a test data and Yt be the class 
labels. Given di∈Dt, the number of votes for 
di on class j is
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k
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Accuracy is calculated as

Acc
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where n is the number of objects in Dt and yi 
indicates the true class of di.

5. EXPERIMENTS

In this section, we present two experiments 
that demonstrate the effectiveness of the new 
random forest algorithm in handling high di-
mensional data. High dimensional datasets of 
various sizes and characteristics were used in 
the experiments. The experimental results show 
that the random forest models generated using 
feature weighting significantly outperform 
random forest models generated with Breiman’s 
original algorithm (Breiman, 2001), in terms of 
classification accuracy.

5.1. Datasets

Nine real life datasets were used in these ex-
periments. These datasets are diverse in the 
number of features, the number of records, 
and the number of classes. The characteristics 
of these datasets are summarized in Table 2.

The datasets Mnist and Gisette are hand-
written digit images. Data Mnist comes from 
the MNIST database of handwritten digits 
(LeCun & Cortes, 2010). This dataset contains 
48,000 digit images for training and 10,000 
images for testing. The image of each arabic 
digit was size-normalized and centered in a 
fixed-sized image, from which 780 features 
were extracted for digit recognition. Ten arabic 
digits were grouped into two classes, one con-
taining digits from 0 to 4 and the other contain-
ing digits from 5 to 9. The data Gisette consists 
of 6000 records, each describing a handwritten 
digit “4” or “9”. The two handwritten digits are 
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highly confusable and difficult to recognize. 
Classification of this dataset was one of the 
tasks in the NIPS2003 feature selection chal-
lenge (Asuncion & Newman, 2010).

Dataset Tis comes from the Kent Ridge 
Biomedical Data Repository (Li, 2010). The 
original raw data consisted of the genomic se-
quences of a selected set of vertebrates extracted 
from GenBank (GenBank is the NIH genetic 
sequence database, an annotated collection of all 
publicly available DNA sequences.). The task is 
to predict the Translation Initiation Sites (TIS) 
at which the translation from a messenger RNA 
to a protein sequence was initiated. In order to 
convert the TIS prediction problem into a clas-
sification problem the dataset creators, Liu and 
Wong, matched each 3 nucleotides to 1 amino 
acid and counted the frequency of single and 
paired amino acids. This complicated data 
processing produced 927 features. The detailed 
process, including a biological explanation, is 
detailed in Liu and Wong (2003). The dataset 
has two classes: true (positive) TIS and false 
(negative) TIS.

In addition to the high-dimensional biologi-
cal and image data we also used 7 text datasets. 
Text data represents the most common real life 
high-dimensional data. The 6 datasets Fbis, 
La1s, La2s, Re1, and Wap are frequently used 
as text document classification benchmark 
data (Han & Karypis, 2000). Dataset Fbis was 
compiled from the Foreign Broadcast Informa-

tion Service for TREC-5 (http://trec.nist.gov). 
Dataset Re1 comes from the Reuters-21578 
text categorization test collection Distribution 
1.0 (Lewis, 1999). Datasets La1s, La2s were 
selected from the Los Angeles Times for TREC-
5. Dataset Wap is from the WebACE project 
(WAP) (Han et al., 1998).

The last text dataset is the Newsgroups 
data. This is a popular text corpus for experi-
ments in text applications of machine learning 
techniques. It was collected from 20 different 
Usenet newsgroups and contains 18,772 docu-
ments divided into 20 different classes (Rennie, 
2008). We preprocessed this dataset by remov-
ing stop words and performing word stemming 
to keep 5000 of the most informative terms as 
distinct features in the final dataset.

5.2. Experimental Setting

We carried out a series of experiments on the 9 
datasets to compare our proposed method and 
Breiman’s method. For each dataset, we ran 
both random forest algorithms against different 
sizes of feature subspaces. Since the number 
of features in these datasets was very large, 
we started with a subspace of 5 features and 
increased the subspace by 5 features each time. 
For a given subspace size we built 100 trees 
for each random forest model. C4.5 was used 
to generate the decision trees (Quinlan, 1993).

Table	2.	Characteristics	of	9	real	life	high	dimensional	datasets	

Name # Features # Train Set # Test Set # Classes

Mnist 780 48,000 10,000 2

Tis 927 5200 6875 2

Fbis 2000 1711 752 17

Re1 3758 1147 510 25

Gisette 5000 5000 1000 2

Newsgroups 5000 11,268 7504 20

Wap 8460 1104 456 20

La2s 12,432 1855 845 6

La1s 13,195 1963 887 6
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Figure	1.	The	distribution	of	informative	feature	on	the	9	high	dimensional	datasets,	CS	stands	
for	Chi-Square	and	IGR	is	Information	Gain	Ratio
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We used the four measures (i.e., Strength, 
Correlation, c/s2, and Accuracy as described in 
Section 4) to evaluate each random forest model. 
In order to obtain a stable result, we built 80 
random forest models for each subspace size, 
each dataset and each algorithm. We computed 
the averages of strength, correlation, c/s2 and 
accuracy as the final result for comparison.

5.3. Informativeness Analysis 
on High Dimensional Data

The purpose of this experiment was to inves-
tigate distributions of informative features 
in all subspaces of random forest models 
selected with the feature weighting method 
and with simple random sampling. We aim to 
understand the impact of the feature weighting 
method for subspace selection on classification 
performance of the random forest models. To 
determine the informative features we compute 
feature weights wi for all features and define an 
informativeness threshold σ. The features with 
weight wi	>σ are considered to be informative 
features. Other features are uninformative.

Using simple random sampling all feature 
weights have an equal probability of 1/M to be 
selected, where M is the number of features in 
the dataset. Thus, we set 1/M as the reference 
informativeness threshold for our experiments. 

Given an informativeness threshold, we can 
compute the proportion of informative fea-
tures in all subspaces selected using the two 
informativeness measures: Chi-square statistic 
(CS) and information gain ratio (IGR). We can 
then increase the informativeness threshold 
to investigate the effect on the proportion of 
informative features.

Figure 1 plots the changes of propor-
tions of informative features of the 9 datasets 
for the two informativeness measures in all 
subspaces as we increase the informativeness 
threshold. Each plot starts from the reference 
informativeness threshold of 1/M. We see that 
features in these high dimensional datasets are 
dominated by uninformative features, by our 
measures. Even at the reference informativeness 
threshold the proportion of informative features 
is often around 1/4 of all features. However, 
the reference informativeness threshold is too 
weak. In practice, the weights for informative 
features will be much larger than 1/M. Figure 
1 illustrates that the proportion of informative 
features drops quickly as the informativeness 
threshold increases. The proportion of infor-
mative features in high dimensional data is 
very small, confirming again that the chances 
of randomly selecting an informative feature 
with simple random sampling are very small.

Table	3.	Test	set	accuracy	and	c/s2	error	bound	on	the	9	high	dimensional	datasets	

Dataset

c/s2 Error Bound Test Accuracy (%)

RF
New_RF

RF
New_RF

CS IGR CS IGR

Mnist 0.1262 0.0863 0.0791 96.12 97.34 97.37

Tis 0.5861 0.2532 0.2583 83.79 90.72 90.75

Fbis 2.3552 1.0841 1.2186 77.79 83.24 82.31

Re1 13.784 0.9832 1.1518 60.79 84.51 83.33

Gisette 0.1315 0.0891 0.0813 95.53 96.9 96.3

Newsgroups 15.651 1.5723 1.4713 61.38 70.38 72.33

Wap 6.0206 1.5288 1.4889 68.21 80.04 81.79

La2s 20.598 0.5131 0.5162 32.55 88.57 87.22

La1s 17.033 0.5191 0.5162 32.47 86.47 86.7
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Figure	2.	Strength	changes	against	the	number	of	features	in	the	subspace	on	the	9	high	dimen-
sional	datasets
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Next we investigated the impact of the 
informative features on classification perfor-
mance. The error bound indicator c/s2 and the 
accuracy on the test data is used to compare the 
three models for each dataset. A subspace size 
of log ( )2 1M +   is used. Table 3 summarizes 
the results. “RF” stands for random forest with 
Breiman’s original method, and “New_RF” is 
random forest with our proposed method. We 
can see that our new random forest algorithm 
(irrespective of the choice of informativeness 
measure) always reduces the error bound and 
increases the classification accuracy on all 
datasets. The average increase in accuracy is 
19% with a maximum increase of 56%, which 
is a remarkable improvement.

5.4. Performance Comparison on 
High Dimensional Data

In this experiment we carried out a compre-
hensive analysis on the properties of the new 
random forest algorithm on the 9 real life 
high dimensional datasets and compared the 
results with those of Breiman’s random forest 
algorithm. We used different subspace sizes 
to build random forest models. For the new 
random forest algorithm, the two methods 
were used to compute the feature weights. 
In each subspace, we built 80 random forest 
models by each algorithm and calculated the 
average values of the four measures Strength, 
Correlation, c/s2, and Accuracy. We began with 
a subspace of 5 features. The performance of 
the three random forest algorithms on the four 
measures for each of the 9 datasets is shown 
in Figures 2, 3, 4, and 5.

Figure 2 plots the strength for the three 
methods against different subspace sizes on 
each of the 9 datasets. The dark squares show 
the strength computed from Breiman’s algo-
rithm. The dark triangles show the strengths by 
the new algorithm with IGR as the feature 
weights while the circles show the strengths 
with CS. In the same subspace, the higher the 
strength, the better the results. From the curves, 
we can see that the new algorithms consis-
tently performed better than Breiman’s algo-

rithm. The advantages are more obvious in 
small subspaces. The new algorithms quickly 
achieved higher strength as the subspace size 
increased. Breiman’s algorithm requires larger 
subspaces to achieve a higher strength. These 
results indicate that the feature weighting 
method for subspace selection enables random 
forest models to achieve a higher strength for 
small subspace sizes compared to Breiman’s 
algorithm.

Figure 3 plots the curves for the correlations 
for the three random forest methods on the 9 
datasets. For small subspace sizes Breiman’s 
algorithm produces higher correlations between 
the trees on all datasets, except for Newsgroups. 
The correlation decreases as the subspace size 
increases. For the random forest models the 
lower the correlation between the trees then the 
better the final model. To achieve a low level 
of correlation for Breiman’s algorithm, a larger 
subspace size is generally required. With our 
new random forest algorithms a low correlation 
level is achieved with very small subspaces in 
all 9 datasets. We also note that as the subspace 
size increases the correlation level increases 
as well. This is understandable because as the 
subspace size increases, the same informative 
features are more likely to be selected repeatedly 
in the subspaces, increasing the similarity of the 
decision trees. Therefore, the feature weight-
ing method for subspace selection works well 
for small subspaces, at least from the point of 
view of the correlation measure. Gisette and 
Newsgroups data sets are two special cases 
which require further investigation.

Figure 4 shows the error bound indicator 
c/s2 for the three methods on the 9 datasets. 
From these figures we can observe that as the 
subspace size increases, c/s2 consistently re-
duces. The behaviour indicates that a subspace 
size larger than log ( )2 1M +   benefits all three 
algorithms. However, the new algorithms 
achieve a lower level of c/s2 at subspace sizes 
of log ( )2 1M +   than Breiman’s algorithm. To 
achieve the same level with Breiman’s algorithm 
we require the subspace size to be several times 
larger than log ( )2 1M +  . This demonstrates 
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Figure	3.	Correlation	changes	against	 the	number	of	 features	in	the	subspace	on	the	9	high	
dimensional	datasets
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Figure	4.	c/s2	changes	against	the	number	of	features	in	the	subspace	on	the	9	high	dimensional	
datasets
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Figure	5.	Test	Accuracy	changes	against	the	number	of	features	in	the	subspace	on	the	9	high	
dimensional	datasets
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a clear advantage for the new algorithms in 
reducing computational costs.

Finally Figure 5 plots the curves showing 
the accuracy of the three random forest models 
on the test datasets from the 9 datasets. Similar 
to c/s2, the accuracy of models produced using 
Breiman’s algorithm is low for small sub-
spaces. In the subspace of log ( )2 1M +   fea-
tures the new algorithms achieve higher ac-
curacy. To achieve the same level of accuracy 
Breiman’s algorithm requires a much larger 
subspace. These results illustrate that the sub-
space formula log ( )2 1M +   in very high di-
mensional data remains valid for the new algo-
rithms. However, it is no longer valid for 
Breiman’s algorithm. A much larger subspace 
is required, and the actual subspace size for 
accurate models is different for the different 
datasets. In practice, it is difficult to determine 
a subspace size for high dimensional data when 
using Breiman’s algorithm. Instead, with our 
new algorithms, we can retain the use of 
log ( )2 1M +   as the subspace size, even for 

high dimensional data. This is a major result 
from our research.

6. CONCLUSION AND 
FURTHER WORK

In this paper we have presented a feature weight-
ing method for subspace selection for building 
random forest models using high dimensional 
data. We have presented a new random forest 
algorithm that incorporates the new subspace 
selection method. The algorithm can be used 
to classify multi-class data and can retain a 
small subspace size to create accurate random 
forest models-we retain Breiman’s formula 
log ( )2 1M +   for determining the subspace 

size. For high dimensional data this formula is 
no longer valid for Breiman’s algorithm because 
the subspace size is shown empirically to be 
too small and produces less optional models.

Building random forest models from large 
high dimensional data presents computational 
challenges. Our new algorithms address this 
to some extent, by limiting the subspace size 

without compromising (and in fact improving) 
model performance. Our future work is explor-
ing distributed solutions to make use of cloud 
computing to implement the new random forest 
algorithm to tackle very large data problems.
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