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Abstract

We describe some initial experiences in dealing with the task of acquiring knowledge where a
very large collection of case histories is available. A Knowledge Discovery in Databases (KDD)
approach is taken. KDD is the process of extracting novel information and knowledge from
large databases, consisting of many interacting stages performing specific data manipulation and
transformation operations with an information flow from one stage onto the next (and usually
with feedback into previous stages). We characterise our experiences of this process for the task
of acquiring knowledge for the domain of motor vehicle insurance premium setting for NRMA
Insurance Limited.

Keywords: Knowledge acquisition, knowledge discovery in databases, data mining, insurance premi-
ums, risk analysis, fraud.

1 Introduction

Knowledge Discovery in Databases (KDD) is commonly defined as the “non-trivial process of
identifying valid, novel, potentially useful, and ultimately understandable patterns in data”
(Fayyad, Piatetsky-Shapiro and Smyth 1996). KDD technology combines techniques from a va-
riety of related disciplines, notably Databases, Artificial Intelligence, Statistics, Scientific Dis-
covery, and Visualisation. KDD is indeed identical to none of them but rather draws upon the
research and technology from all of them. A particular focus of KDD is on extremely large real
world training datasets often of sizes measured in giga-bytes and tera-bytes. The sheer size alone
eliminates many existing techniques (from statistics, machine learning, and knowledge acquisi-
tion) for automatically, let alone manually, analysing the data.
With such a wealth of data available a knowledge engineering exercise in extracting interesting
and useful knowledge needs to be carefully guided by the domain experts. We relate in this
paper our experience in using a KDD process to assist in the task of knowledge acquisition when
very large training datasets are available.
The KDD process is recognised as consisting of a number of interacting, iterative, stages in-
volving various data manipulation and transformation operations. Information flows from one
stage onto the next and also backwards to previous stages. Fayyad, Piatetsky-Shapiro and Smyth
(1996), for instance, identify 9 steps in the KDD process whilst Williams and Huang (1996) iden-
tify a simpler, yet still sufficient model of the process involving 4 primary stages.
Most attention within the KDD community has focused on the Data Mining (algorithmic explo-
ration of the data) stage of the process. It is critical, however, to recognise that Data Mining is
only one part of the whole process (Brachman and Anand 1996). Anecdotal evidence (and our
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own experience) suggests that the other stages account for up to 95% of the effort—it is impor-
tant then to understand the whole KDD process. Our project brings together a team of researchers
in Databases, Machine Learning, Statistics, and Visualisation, to perform KDD research and de-
velopment with industry partners who provide domain expertise and real world databases. A
particular focus of the project is the use of high performance computers and parallel algorithms.
Domains ranging from insurance fraud to astronomy have been studied.
In this paper we first present a model of the KDD process which identifies the necessary and
sufficient elements of the process and supports the variety of operations required for knowledge
acquisition using KDD. Section 2 identifies some of the issues that characterise KDD. We then
present a view of the KDD process in Section 3. Sections 4–7 then illustrate the various aspects
of the model in the context of an actual case study from insurance risk analysis performed with
NRMA Insurance Limited, one of Australia's largest general insurers.

2 Characteristics of KDD Applications

What distinguishes KDD from related research areas such as Knowledge Acquisition, Machine
Learning, and Statistics is the size of the training dataset available, the complexity of that data,
and the expected results, rather than by the particular methods and algorithms used. But more
than this, KDD is viewed as an all encompassing process for the discovery of knowledge in
databases. KDD attempts to deal with real world problems and hence real world data. The
source data for KDD is often extracted from databases which are generally not built with KDD
in mind. The data must be cleansed and moulded into a form suitable for the particular KDD
task. It must then be transformed into a format that the particular knowledge acquisition or
machine learning tools can work with. Some of the issues which need to be addressed within the
KDD context include noise, redundant information, missing values and attributes, large data sets
and sparse data (Frawley, Piatetsky-Shapiro and Matheus 1992, Matheus, Chan and Piatetsky-
Shapiro 1993).
Redundancy can result from the inclusion of attributes and records in the source data which
are irrelevant or superfluous to the data mining. Determining which attributes and records are
redundant is usually difficult. Removing apparently irrelevant attributes can lead to a reduction
in the types of new knowledge that can be discovered. In insurance risk analysis, for example,
the office at which an insurance application was lodged may seem irrelevant, yet could be a
particularly interesting risk factor. Leaving truly redundant attributes in the data, though, can
lead to aberrant results or could significantly impact upon the time taken to run the data mining
algorithms.
Redundancy can also occur when multiple instances in the database represent the same object,
but perhaps recording some different information. For many data mining algorithms this is not
a desirable situation—often the algorithms assume independence between records. A typical
example is when the source database simply records transactions performed by clients. While
some data mining algorithms, such as the association algorithms of Agrawal and Srikant (1994),
work directly with such data, many require the data to be entity (in our case, insurance policy)
oriented.
The problem of missing attributes often arises because of the desire to use more information in
data mining than the original designers of the database considered necessary. The missing data
can only sometimes be obtained, and then at a cost.
The volume of data available for a KDD task is an obvious problem, but one which often leads to
the related problem of sparse data. Data can be sparse, for example, when there are many missing
values for various attributes. It can also be sparse when the concept of particular interest in the
data does not occur very often. This is the case, for example, in using KDD to assist in fraud
detection in large insurance databases, where instances of fraud are usually relatively rare.
Another issue which complicates KDD relates to its exploratory nature. Often in starting a KDD
task it will not be clear exactly what is to be discovered. In general there is a broad idea of what is
expected but as the process proceeds and results are generated the directions taken may change
quite dramatically. Although the nature of the data may lead us to use particular techniques, it
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is not always clear a priori which tools will produce the best results. Indeed, the use of a variety
of tools and techniques often leads to an interesting variety of results.

3 The KDD Process

We view the process of knowledge discovery from databases as consisting of the four stages
identified in Figure 1. This covers the 9 steps identified by Fayyad, Piatetsky-Shapiro and Smyth
(1996) into a smaller number of higher-level stages to more simply identify the whole process. It
is important though to also appreciate the complexity of the process.

Selection

Database

Preprocess

Source Data

Knowledge Patterns

Working
Data

Evaluation Extraction

Figure 1: The four stage KDD process.

In most cases we begin with an original Database, usually developed for tasks other than KDD.
After due consideration (which can require initial exploratory runs through the KDD process to
gain better insights into what is required from the Database) an appropriate collection of Source
Data is extracted from the Database. This Source Data forms the basis for the rest of the KDD
process.

3.1 Data Pre Processing

The purpose of the Preprocessing stage is to cleanse the data as much as possible and to put it
into a form that is suitable for use in later stages. The types of Preprocessing that a KDD environ-
ment needs to support includes traditional database projection and selection, and value mapping
and classification functions. Data cleansing type operations, such as operations to resolve fuzzy
matches between entities in the data that actually represent the same entity, are also useful.
The original Database is generally stored and maintained separately from the KDD process. Con-
trol and access to this original Database is usually restricted (by legislation and commercial con-
cerns) due to the confidential nature of the material of interest. The Selection stage then is usually
performed by the data owners, with input on data requirements from the KDD team.
The Source Data often requires cleansing as part of the KDD process and may be transformed
in many ways to turn it into suitable Working Data. These operations are part of the arsenal
represented in the set of operations S.
Meta-knowledge about the Source Data is also important in KDD. This includes semantic infor-
mation provided by the schema, domains of attributes including types and value ranges, dis-
tributions of attribute values, and relations between attributes. This meta-knowledge is usually
obtained from domain experts or can be calculated directly from the data. It is often considered
as part of the background knowledge.

3.2 Knowledge Extraction

Once a suitable Working Dataset has been produced the knowledge extraction phase begins. A
variety of tools to explore different types of patterns in the Working Data can be explored. Some
tools produce information that is used by other tools (e.g., statistical tools used to determine
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characteristics of the data required as input parameters for machine learning). The extraction
stage itself is often cyclic. In Statistics it is often represented as a cycle between the three stages
of: model identification; parameter estimation; and diagnostic checking of the model fitted.
The variety of techniques used in extraction include clustering, decision tree induction, neural
networks, genetic algorithms, and a variety of statistical algorithms. These operations are usu-
ally oriented towards data description (as in clustering) or model fitting (as in classification).
Classification rules are often extracted using these techniques and can be used for prediction
on unseen objects. Various visualisation tools which include methods and algorithms for view-
ing the internal representation of the data in various human interpretable forms are also useful.
These tools enable close involvement of the domain experts in all of the KDD stages—domain
experts are often more sensitive to subtleties of the data than automated algorithms.

3.3 Pattern Evaluation

Using a variety of tools and even tuning a single tool in a variety of ways leads to the discovery
of many different patterns. The fourth stage of KDD involves an evaluation of the patterns
discovered in order to find those that give rise to useful and novel knowledge. Evaluation is a
non-trivial task.
A Pattern Evaluation function is used to evaluate the interestingness of discovered knowledge
from the user's viewpoint. KDD requires that the discovered knowledge be useful in some sense.
The Pattern Evaluation function governs the selection of the patterns which are of interest to the
user and has been identified by others as an integral part of KDD (Frawley et al. 1992, Matheus
et al. 1993, Fayyad, Piatetsky-Shapiro and Smyth 1996). Pattern evaluation is also important in
reducing the search space (Holsheimer, Kersten, Mannila and Toivonen 1995).
Formally, a Pattern Evaluation function F is a function that maps from a set of statements ex-
pressed in some language L (e.g., production rules) to a set of (usually) numeric values. The
evaluation might consider each pattern in the context of all discovered patterns, or patterns
might be evaluated for their usefulness, novelty, and validity in the context of the application
domain. Evaluation functions are often quite complex and application specific.
Domain experts often provide the most effective form of evaluation of discovered patterns. Visu-
alisation tools are a critical component of this Evaluation, providing effective presentations of the
results of mining. In such cases there is little need nor desire to implement algorithmic evaluation
functions. Where they can be automated it is advantageous to do so to assist in automatically
processing the large collection of discoveries common in the KDD context.
Evaluation functions can be generic, as are those that are expressed in terms of the data mining
tools being used (e.g., a good pattern is one that minimises the misclassification cost of the dis-
covered rules). Alternatively they can be specific to an application, where the usefulness of a rule
might be measured in terms of the associated claim costs in an insurance application.

3.4 The KDD Model

The KDD process as described above represents the typical scenario for those involved in knowl-
edge discovery from databases, even though the details of the process may differ for different
KDD applications. The key elements of the process are: the data; the background knowledge
and the discovered patterns and knowledge; the method(s) for evaluating discovered patterns;
and the collection of operations associated with the different stages of the process. The basic
model is thus identified as a four tuple < D;L;F ;S > consisting of: database D; knowledge
representation language L; evaluation functions F ; and operations S.
It is important to emphasise that for the successful application of the KDD process both domain
expertise and KDD expertise are crucial, and that the KDD process is very much an iterative pro-
cess where earlier stages often need to be refined to address “discoveries” made in later stages.

4



4 Case Study: Insurance Risk Analysis

Assessing the performance of an insurance portfolio requires both overall and within-portfolio
analyses. The overall analysis demonstrates whether the portfolio in the past was profitable
or not, whereas a detailed within-portfolio analysis reveals which particular areas within the
portfolio made significant profits and loses (Coutts 1984). The latter information is particularly
important for a company in order to maintain both its competitiveness in the market and its
profitability. Without knowing the areas of significant risk in its portfolio an insurer will be
unable to sustain operation, even though the overall portfolio may perform well temporarily. A
portfolio should balance its exposure to risk.
The overall analysis of an insurance portfolio can be performed using straight forward statistical
techniques, based on the total premiums earned and the total of the claims paid. More sophisti-
cated approaches are required for within-portfolio analysis (Brockman and Wright 1992, Coutts
1984).
A common approach to within-portfolio analysis is to partition the risk of the whole portfolio
into small areas of risk. These are identified by a set of risk rating factors usually represented by
a contingency table. Only a few variables are usually considered at a time (the claim frequency,
the claim cost, and the exposure, for example) for each cell of the contingency table.
When a portfolio is partitioned a model can be fitted to each cell relating the level of the risk rat-
ing factors to the claim frequency and claim cost. Historical data is used to estimate parameters
of the model. The model can then be used to predict the expected claim frequencies and claim
costs for different risk rating factor levels.
With such an approach though the risk rating factors must be categorical. A continuous factor
has to be categorised into a small number of levels. A trade-off is needed in the detail of the
analysis and fit of the model. Also, the interaction between factors is often ignored because
of the difficulty with handling them. With many variables and with categorical variables with
many values, the number of possible interactions is very large.
Alternative approaches to the task of insurance risk analysis have primarily been explored within
the statistical/actuarial domains. Siebes (1994), however, considered the problem of insurance
risk analysis in the context of data mining by employing probability theory. Insurance claims
on policies in any one year were viewed in terms of Bernoulli experiments. This work lead to
the idea of developing equal probability, homogeneous descriptions of classes of the insurance
portfolio.
An important goal in our exploration of the KDD process for real world knowledge acquisition
tasks is to involve expert intuition as an integral aspect of the process, supported by formal
analyses.

5 Insurance Portfolio Databases

A portfolio database in an insurance company contains a set of insurance policies purchased by
customers. A policy insures up to a specified value a particular entity (motor vehicle, household
contents, buildings) from loss. When damage or loss occurs to the insured entity a claim is made
against the policy for compensation. A policy is valid for a certain time period and is usually
renewed upon payment of the premium. The period during which a policy is active is referred
to as the period of exposure (as in the insurer's exposure to risk) and is usually measured in days.
At any particular time the exposures associated with active policies in the portfolio database will
differ depending upon their dates of validity.
A key factor to the success of an insurance portfolio is balancing the trade-off between the set-
ting of competitive premiums and covering the risk associated with the exposure. The insurance
market is very competitive and setting premiums too high leads to a loss of market share. Yet set-
ting premiums too low leads to loss of profit. Premiums are generally based on a small number
of key factors (such as age of driver, type of vehicle, and address of owner) identified by vari-
ous analyses and intuitions. Because of the size of many insurance portfolios, analysis is often
restricted to straightforward techniques.
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The performance of a portfolio is usually assessed in the context of the previous year's data.
The analyses performed on the data are used by the underwriter to envisage the near future
performance of the portfolio and to adjust the policy rating structure to reflect changes in the
market and in the behaviour of the insured. Essentially the analyses are used each year to tune
the rules which set premiums for the coming year.
There are two extremes in setting premiums: all policies attract the same premium; or each
individual policy has an individual premium determined for it based on all of the details of
the policy. Neither extreme is particularly useful nor practical. The former would likely penalise
those who are less likely to lodge claims in favour of those who a more likely to do so, and would
probably drive them to the competitors! The latter would generally be impractical because of the
complexity of the rules that would be required. However, the goal of good insurance premium
setting is likely to lean towards the latter than to the former. An insurer would prefer to fine tune
their premium setting more so than is often currently performed, identifying more factors that
affect the risk and taking more information into account in setting premiums.

6 Preprocessing

Starting with the data extracted from the source database maintained by NRMA Insurance Lim-
ited (consisting of many millions of policies), a number of transformations had to be performed
before a suitable Working Dataset was built. This involved many iterations, some of which were
performed after the initial knowledge extraction tasks were performed. (The initial runs indi-
cated different directions to take, different data to obtain, and different transformations to be
performed.)
The Source Dataset was extracted from the NRMA's motor vehicle insurance portfolio database.
An initial trial dataset of some 125,000 records, covering a time period of only 6 months (1 July
1994 to 31 December 1994), was used prior to working with the full dataset. Each record con-
tained 93 fields of data. Figure 2 summarises the preprocessing performed.

Disjoint Noise

Database
58MB

Same Extended
Period Periods Periods

Same

Different

Person

Persons

Selection

Cleanse

Preprocessing

78000 records
78000 policies

83000 policies
125000 records

18MB
Source Data

15MB
Working Data

Figure 2: Preprocessing.

6



The first task was to remove from the database those fields/attributes/variables which were
irrelevant to the task at hand. This process was complicated by the fact that some “obviously”
irrelevant attributes (e.g., office at which application for insurance was lodged) could contain
surprising information. On the other-hand, leaving irrelevant attributes in the data set can lead
to aberrant results. A panel of KDD experts (from Machine Learning, Statistics, and Databases)
and domain experts (from the NRMA) considered each attribute in turn, removing only those
that were seen as clearly irrelevant by all.
The second task, labelled “Cleansing” in Figure 2, involved performing various transformations
on the data (e.g., birth dates transformed into ages). Various computed fields were also added
to the data at this stage. One, for example, calculated the period of exposure associated with the
policy in the context of the period of interest (last six months of 1994).
The third task involved collapsing the transaction-oriented data that was supplied into a policy-
oriented dataset which is required for the types of analyses intended to be performed. The orig-
inal database was oriented towards managing the insurance portfolio–it was not designed with
Data Mining in mind. A transaction in the original database records some change made to, or
incident associated with, a policy. Hence, in the 125,000 records, there were only about 83,000
policies. Some policies had multiple owners (hence multiple records) while others had a variety
of changes, such as renewals, cancellations, etc. Other policies appeared more than once when
there was more than a single claim made on the policy in the period of interest.
A careful study of the dataset had to be made to understand all of its nuances. This finally
resulted in the definition of a set of rules to merge the multi-record policies into single policy
records. These rules were implemented as a variety of operations and were tuned iteratively as
the data and problems became better understood.
An intermediate dataset was created with some 78,000 individual policies, each described by
43 attributes, some of which were generated in the merging process to record, for example, the
number of owners of each individual policy and the total amount of all claims made against a
policy. Policies that were cancelled or met other criteria (e.g., contained critical but missing data)
were also removed from the dataset.
The intermediate dataset was intended to be used for multiple data mining objectives (e.g., fraud
detection). Consequently, some of its attributes were still irrelevant to the risk analysis and thus
further processing was performed to build the final risk analysis Working Dataset. This dataset
contained some 75,000 unique policies, each being represented by 23 attributes, including expo-
sure and total claims cost.
An initial observation that has some impact upon the type of analysis performed was that of the
75,000 policies, only about 4,000 of them actually had claims against them. While not particularly
surprising, such a low relative occurrence (about 5%) of an important aspect of the data does
require attention (e.g., appropriate use of prior probabilities), but is beyond the immediate scope
of this paper.
A second observation of relevance is that different policies have different exposures, even though
the majority have exposure for the whole period. This indicates that the exposure should be
used to weight the examples in some way. This important aspect of the data is also left for future
exposition.

7 Risk Analysis

We now describe the process of extracting knowledge for use in this domain.

7.1 Decision Trees

An implementation of the classification and regression tree software CART (Breiman, Friedman,
Olshen and Stone 1984) was used in the initial experiments to extract interesting patterns. Due to
the large number of training examples a parallel implementation by Thinking Machines Corpo-
ration, called StarTree and part of the Darwin toolkit (Thinking Machines Corporation 1995), was
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used. CART and StarTree are similar in many ways to the traditional machine learning decision
tree induction algorithm C4.5 (Quinlan 1993).
StarTree consists of three operations: grow tree; evaluate tree; and apply tree. The grow tree stage
actually implements the usual divide-and-conquer strategy in a parallel architecture for building
a full decision tree based on a training set. The evaluate tree stage evaluates the generated tree in
the context of a test dataset. It is here that pruning is performed and a variety of test datasets
can be used to explore the performance of the tree in the context of pruning. The apply tree stage
simply applies any resulting trees to new unseen data. StarTree provides a variety of output
options, including a LATEX formatted decision tree or a collection of rules.

7.2 Methodology

The claim cost attribute in the final database was selected as the target attribute (or dependent
variable) and the remainder (excluding exposure) as the independent variables. All policies were
classified into two classes: those with claims and those with no claims—the claim cost was ef-
fectively reclassified as 1 or 0. The dataset was processed with grow tree to produce a complete
decision tree.
Using StarTree a rule base can be built from a generated decision tree. A rule base consists of a
set of rules, each corresponding to a different path through the tree representing a conjunction of
the conditions associated with the nodes of the tree. An example rule might be:

If age � 20
and sex =Male
and insured amount � 5000
and insured amount < 10000
Then insurance claimed = 1, cost = 0, (0, 15)

The rule indicates that under the given conditions an insurance policy is claimed against (and
the cost of misclassification associated with this rule is 0). There are 15 true examples from which
this rule was generated.
The primary rule base generated by StarTree is now extended with information derived from
other sources, including the Source Dataset and original database. Significant areas of risk were
explored by viewing those leaf nodes containing claims. The frequency of claims at any leaf
together with the total of the claim costs at the leaf nodes provide important information. How-
ever, since claims cost had been factored out of the training set used by StarTree to build the
decision tree, this information was incorporated as an extra step in the process. The rules are
thus extended with information that records the total exposure and the total claim cost for each
rule. Other information such as the total of the premiums associated with the “area of risk” could
also have been determined.
The generation of this extra information is an important step, particularly in assessing the use-
fulness and appropriateness of the discovered knowledge. The additional information can be
used to determine whether the information embodied as a rule is useful as knowledge. Such an
exploration of the rules discovered turns this data mining operation, in a sense, back onto itself.
This is particularly the case where we are dealing with very large datasets with many attributes
from which very large trees (and hence very many rules) are generated without pruning (and
hence over fitting). The generated rules themselves need to be data mined (in the context of this
evaluation stage).

7.3 Initial Results

Some initial results from the analysis of the NRMA Insurance Limited sample database are pre-
sented here. Due to the commercial nature of the data the actual variables will be referred to as
F01 , F02 , : : :, F23 .
For illustration, three decision trees were generated using different selection measures for the
partitions—we will refer to the three trees as the entropy, gini, and error trees. (Refer to Mingers
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Tree name: Entropy Gini Error
Decrease Function entropy gini error
Number of Nodes 10215 10887 8197
Depth 43 38 39
Total leaves 5062 5391 3331
Positive leaves (Pl) 1967 2188 1192
Negative leaves (Nl) 3095 3203 2139
Policies by Pl 3815 3795 1682
Policies by Nl 71993 72013 74126

Table 1: Using alternative decrease functions.

(1989) for a discussion of selection measures.) An idea of the size and organisation of the trees
produced from the sample data is gained from the statistics of the various trees grown (Table 1).
It is clear from Table 1 that very large trees are generated given the large number of attributes
(and possible values) and the large number of examples. The row in the table giving the total
number of leaves corresponds also to the number of rules generated from the tree. Similarly the
positive leaves and the negative leaves. The Entropy tree, for example, generates 1967 rules for
claims.
Although 21 independent variables were used in the input data, only 19 were selected by the
Entropy and Gini trees and 20 by the Error tree. Table 2 lists the selected variables and the
frequencies with which the variables appear in each tree. Thus, the variable F01 appears 111
times in the Error tree. Such information can be of use in gaining some insights into which
variables appear to be important. (The location of the variable within the tree and the type of the
variable—categorical versus continuous—are other important indicators.)

Variable Entropy Gini Error
F02 0 0 0
F01 0 0 111
F14 465 840 60
F21 668 711 52
F19 1756 1367 119
F22 2223 2177 85
F18 2258 2034 374
F12 2667 2589 289
F16 3013 2461 82
F07 3051 2947 1407
F15 3543 3122 189

Variable Entropy Gini Error
F13 4629 4928 224
F20 4843 5175 19
F17 6164 6197 1023
F04 6773 6743 4041
F10 6799 6431 3975
F06 8760 9122 10195
F08 10771 11772 20842
F09 11362 10200 7895
F03 12073 12349 11464
F11 12329 12989 1480

Table 2: Attribute frequencies.

Table 3 records the number of claims associated with the rules generated from each of the three
trees, aggregated by the number of claims. There are 1090 rules from the Entropy tree, for exam-
ple, which have just a single claim. On the other hand, there are 36 claims associated with one of
the rules from the Gini tree. Those rules associated with a higher number of claims would tend
to indicate areas of high risk.
Tables 4 summarises the rules from each tree with more than 14 claims against them or with
a high average claim cost with respect to the exposure. For each such rule the tables record
the number of claims, the total amount of exposure, and the sum of the claim costs. Each row
represents a single rule. In the Gini sub-table, for example, there are 36 claims associated with a
single rule. These claims cover 442 days of exposure and have a total claim cost of $159,472. Such
information can again be used to target areas described by the rules for further explorations.
Armed with such “post learning” analyses, areas of significant insurance risk can be identified
and further investigated. Such investigations could be expected to lead to a better understanding
of insurance risk and to a finer tuning of insurance premium setting.
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Number of RulesClaims
Entropy Gini Error

1 1090 1493 941
2 494 404 150
3 192 135 48
4 82 51 27
5 38 31 7
6 15 16 7
7 18 17 3
8 9 7 3
9 5 6 2

10 5 5 1
11 4 5 1

Number of RulesClaims
Entropy Gini Error

12 2 4
13 4 5
14 4 2
15 2 1
16 2 1
17 2
18 1
22 1 2
24 1
36 1

Table 3: Claims associated with each risk area.

Gini
Claims Exposure Cost

11 221 139673
15 1868 74367
16 2513 54750
17 2635 33152
17 2637 52721
22 2305 70558
22 3839 86988
24 3399 98918
36 442 159472

Entropy
Claims Exposure Cost

15 1745 43308
15 197 55921
16 2198 50213
16 2471 52201
22 265 85678

Error
Claims Exposure Cost

10 349 27827
14 2183 49883
14 2023 49889

Table 4: High claim risk areas.

8 Summary

In this paper we have followed the KDD process and highlighted its application to the domain
of motor vehicle insurance risk assessment as an adjunct to the usual knowledge acquisition
process. StarTree was used to analyse the large insurance dataset, generally building very large
decision trees (and hence large rule sets). The rules were used only as an aid in the “discovery”
of interesting areas of the data. By understanding such hot spots, better insights into policy
premium setting can be gained.
We have identified a simple yet sufficient breakdown of the KDD process involving four inter-
acting and iterative stages, and have presented an associated model of KDD identifying the key
elements of the process. An example knowledge acquisition exercise using the KDD methodol-
ogy for insurance risk analysis has been used to illustrate the process and the model.
Our ongoing work is exploring alternative approaches for dealing with the very large datasets
that are generally available for applications such as insurance. An approach whereby large
datasets are first clustered and where the resulting clusters are subjected to decision tree in-
duction has been found to simplify the knowledge acquisition task. Even with high performance
computers which can handle larger problems, such considerations remain necessary.

Acknowledgements

The authors acknowledge the support provided by the Cooperative Research Centre for Ad-
vanced Computational Systems (ACSys) established under the Australian Government's Co-
operative Research Centres Program. This work has been performed within the Divisions of

10



Information Technology (DIT) and Mathematics and Statistics (DMS) of the Australian Govern-
ments' Commonwealth Scientific and Industrial Research Organisation (CSIRO). Contributions
made by Peter Milne of DIT and Murray Cameron, Glenn Stone, Petra Kuhnert, and David Chan
of DMS are also acknowledged. Industry collaborators from NRMA Insurance Limited include
Keith Forster, Philip Woods, and Hong Ooi.

References

Agrawal, R. and Srikant, R.: 1994, Fast algorithms for mining association rules in large databases,
VLDB '94.

Brachman, R. J. and Anand, T.: 1996, The process of knowledge discovery in databases: A
human-centered approach, in Fayyad, Piatetsky-Shapiro, Smyth and Uthurusamy (1996),
chapter 2.

Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J.: 1984, Classification and regression trees,
Wadsworth, Belmont, CA.

Brockman, M. J. and Wright, T. S.: 1992, Statistical motor rating: Making effective use of your
data, Journal of Institute of Acturaries 119, 457–543.

Coutts, S. M.: 1984, Motor insurance rating: An acturarial approach, Journal of Institute of Ac-
turaries 111, 87–148.

Fayyad, U. M., Piatetsky-Shapiro, G. and Smyth, P.: 1996, From data mining to knowledge dis-
covery: An overview, in Fayyad, Piatetsky-Shapiro, Smyth and Uthurusamy (1996), chap-
ter 1.

Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P. and Uthurusamy, R. (eds): 1996, Advances in
Knowledge Discovery and Data Mining, AAAI Press.

Frawley, W. J., Piatetsky-Shapiro, G. and Matheus, C. J.: 1992, Knowledge discovery in databases:
An overview, AI Magazine 13(3), 57–70.

Holsheimer, M., Kersten, M., Mannila, H. and Toivonen, H.: 1995, A perspective on databases
and data mining, Proc. of the First International Conference on Knowledge Discovery and Data
Mining, AAAI Press, pp. 150–155.

Matheus, C. J., Chan, P. K. and Piatetsky-Shapiro, G.: 1993, Systems for knowledge discovery in
databases, IEEE Transactions on Knowledge and Data Engineering 5(6), 903–913.

Mingers, J.: 1989, An empirical comparison of selection measures for decision-tree induction,
Machne Learning 3(4), 319–342.

Quinlan, J. R.: 1993, C4.5: Programs for machine learning, Morgan Kaufmann.

Siebes, A.: 1994, Homogeneous discoveries contain no surprises: Inferering risk-profiles from
large databases, Technical Report CS-R9430, CWI.

Thinking Machines Corporation: 1995, The Darwin solution: A family of prediction and classifi-
cation tools for large databases, Technical report, Thinking Machines Corporation.

Williams, G. J. and Huang, Z.: 1996, Modelling the KDD process: A four stage process and four
element model, Technical Report TR-DM-96013, CSIRO Division of Information Technology,
available from Graham.Williams@cbr.dit.csiro.au.

11


