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Abstract. An association classification algorithm has been used to ex-
plore adverse drug reactions in a large medical transaction data set with
unbalanced classes. Rules discovered can be used to alert medical practi-
tioners, when prescribing drugs to certain categories of patients, potential
adverse effects. It is essential to present these rules to the medical practi-
tioners in a form which is easy for them to understand and interpret. We
assess the rules identified by the association classification algorithm us-
ing survival charts and propose two kinds of probability trees to present
them. Both of them present the risk to the given adverse drug reaction of
certain categories of patients in terms of risk ratios, which are familiar to
medical practitioners. The first shows risk ratios when all rule conditions
applied. The second presents the risk associated with a single risk factor
with other parts of the rule identifying the cohort of the patient subpop-
ulation. The tree presentations are able to demonstrate the heightened
risks due to a combination of risk factors as well as due to a single risk
factor. Thus, the presentations can interpret clearly the risk factors of
adverse drug reactions to medical practitioners.

1 Introduction

Data mining aims to discover previously unknown, potentially useful, un-
derstandable knowledge from large data sources. Data mining does not



provide us with benefits until we can understand how the method works
and what the generated information means. Then we can evaluate this
information and translate it into actionable solutions to problems. Since
data mining usually involves extracting “hidden” knowledge (rules or pat-
terns) from a database, understanding and evaluating the discovered pat-
terns become more important and challenging [3, 6] , especially in health
application [12].

Systematic monitoring of adverse drug reactions is important for both
financial and social reasons. In general, the early detection of unexpected
adverse drug reactions relies on a local spontaneous reporting system
and collated statistics from overseas agencies. At present, adverse reac-
tions resulting from new medications and their interactions with other
medicines are detected only if they are either dramatic or common [9].
When a new drug is introduced, it is likely that unexpected side-effects
will go unnoticed until a very substantial number of patients have been
adversely affected. Spontaneous adverse event reporting databases are
traditional data sources for most data mining work [4, 9, 5, 16], which fo-
cus on the generation of drug-event associations. However, the availability
of a population-based prescribing data set, such as the Pharmaceutical
Benefits Scheme (PBS) data in Australia, when linked to hospital ad-
missions data, provides a unique opportunity to detect rare adverse drug
reactions at a much earlier stage before many patients are affected. This
paper addresses this data mining problem, where the objective here is to
identify the factors, which increase the risk of the adverse drug reaction,
directly from large linked health data rather than spontaneous adverse
event reporting databases.

Prescribed drugs are recorded in PBS data using the WHO code,
based on the Anatomical and Therapeutic Classification (ATC) system
adopted by the World Health Organisation (WHO). Adverse reactions
events are recorded in hospital data using ICD-9 code (International Clas-
sification of Diseases, Ninth Revision). Three case studies have been iden-
tified by our adviser, the Therapeutic Goods Administration, Australia.
They are: 1) ACE inhibitors 1 usage associated with Angioedema. This
case will serve as the main example to illustrate our method in this paper;

1 ACE inhibitors are used to treat congestive heart failure (CHF) and high blood
pressure (hypertension). Angioedema is a swelling (large welts or weals), that occurs
beneath the skin rather than on the surface [11]. There are a number of case series in
the literature demonstrating that ACE inhibitor-related angioedema is responsible
for as many as 40% of angioedema episodes [11].



2) Alendronate usage associated with Esophagitus; 3)Nefazodone usage
associated with a number of Hepatitis conditions.

In our data, the distribution of classes with and without adverse events
is highly unbalanced due to the intrinsic nature of adverse drug reactions
(rare events in the administrative health data [2]). Moreover, rules iden-
tified may be used to alert medical practitioner in their prescription of
drugs to certain categories of patients, who are vulnerable to some ad-
verse drug effects. It is therefore essential to present the knowledge to
medical practitioners in a form easy to understand and interpret. To ad-
dress this health data mining problem, we first modify the Optimal Class
Association Rule Mining Algorithm [7] to discover rules which identify
patient subgroups with a high proportion of patients with target events.
The rules discovered by the association classification are assessed by us-
ing survival charts. We further propose two kinds of tree representation
for mined rules to help them and potential users to gain understanding of
the rules. To the best of our knowledge, there is no similar presentation
of mined rules in the literature.

Organisation. The rest of the paper is organised as follows. Section 2
discusses our method to mine association classification rules from unbal-
anced health data. Section 3 describes the data set and features selected
for the mining process. Section 4 reports mined rules validated by survival
chart, and Section 4.2 presents two kinds of probability tree presentation
of rules. Conclusion and a discussion complete the paper in Section 5.

2 Association Classification for Unbalanced Classes

In contrast to previous work [4, 5, 9, 16], the objective here is to discover
rules which identify patient subgroups with a high proportion of patients
with adverse drug reactions events, directly from large linked health data
rather than spontaneous adverse event reporting databases. It is impor-
tant to note that our linked data set has highly unbalanced classes as
adverse drug reactions are rare events in the dataset (e.g., 116 patients
with angioedema versus 131,884 without angioedema). Traditional clas-
sification approaches search for the rules represented by patterns which
have high global support and high confidence. Since the “normal” group
comprises more than 99% of all cases in the dataset, the class of inter-
est(Class 1 defined in Section 3) i.e. the class with adverse drug reaction
events is given little attention by the approaches. In this paper, we mod-
ify the Optimal Class Association Rule Mining Algorithm [7] to identify
higher risk patient groups of adverse drug reaction events.



To tackle this problem, we introduce local support and risk ratio (as
defined by Equations 1 and 2) to discover rules that identify cohorts in
which the risk of occurrence of the rare events is high. The support in
minor class is called local support defined by Equation 1.

lsup(A → c) =
sup(A → c)

sup(c)
(1)

Here sup(c) and sup(A → c) represent the support (or proportion or
relative frequency) of Class c in the whole population and the support
of pattern A in Class c respectively. Local support is called minimum
coverage in [1] and multiple minimum support in [8]. Minimum local sup-
port can be used as a parameter of the algorithm to specify the minimum
fraction of population of interest in each class of the unbalanced dataset.
We propose to use Risk Ratio as interesting measure for patterns mining,
which is represented by Equation 2.

RR(A → c) =
lsup(A → c)sup(A)
lsup(A → c)sup(A)

(2)

The risk ratio defines the relative risk (belonging to Class 1) of the
patients identified by rule A with respect to the majority patients [10, p.
35]. A denotes the absence of pattern A. For example, A defines patients
in age group [30, 40), then A defines patients outside the age group. Tan
et al. [13] discuss the properties and their consistence of 21 existing ob-
jective interestingness measures in a framework of contingency table and
statistical dependencies of two items. Risk ratio used here as the objec-
tive interestingness measure is not mentioned but it is common in health
application and meaningful to medical practitioners.

3 Data Preparation and Feature Selection

We use the Queensland Linked Data Set(QLDS) [15] — a medical trans-
action data for the rule mining in this study. This data set has been made
available under an agreement between Queensland Health and the Aus-
tralian Department of Health and Ageing (DoHA). This data set links
de-identified patient level hospital separation data (for the period be-
tween 1 July 1995 and 30 June 1999), Medicare Benefits Scheme (MBS)
data, and Pharmaceutical Benefits Scheme (PBS) data (1 January 1995
to 31 December 1999) in Queensland. Each record in the hospital data
corresponds to one in-patient episode. Each record in MBS corresponds



Table 1. List of variables used for association classification

Variable Values

Gender m,f
Age group 1,2,3,4
Indigenous 0,1
Sickness(bed days) 1,2,3
Hosp. Neoplasm Flag 0,1
Hosp. Diabetes Flag 0,1
Hosp. Mental Health Flag 0,1
Hosp. Circulatory Flag 0,1
Hosp. Ischaemic Heart Disease Flag 0,1
Hosp. Respiratory Flag 0,1
Hosp. Asthma Flag 0,1
Hosp. Musculoskeletal Flag 0,1
Total Scripts 0,1,2
PBS Alimentary tract metabolism 0,1
PBS Blood and blood forming organs 0,1
PBS Cardiovascular systems 0,1
PBS Dermatologicals 0,1
PBS Genito urinary system and sex hormones 0,1
PBS Systematic hormonal preparations 0,1
PBS General anti-infective for systematic use 0,1
PBS Antineoplastic and immunimodulating agents 0,1
PBS Musculo-skeletal system 0,1
PBS Nervous system 0,1
PBS Antiparasitic products insecticides and repellents 0,1
PBS Respiratory system 0,1
PBS Sensory organs 0,1
PBS Various 0,1
Class 0,1

to one MBS service for one patient. Similarly, each record in PBS cor-
responds to one prescription service for one patient. As a result, each
patient may have more than one hospital, or MBS or PBS record. Each
patient is assigned to a unique identifier, making it possible to link the
records of each patient in three separate data sets.

For the implementation of the mining task, we need to extract profile
data for all patients exposed to the drug of interest in a 180 day window,
which is determined by domain knowledge. The patients are further par-
titioned into two classes (Class 1 and 0). The patients in Class 1 are such
patients that have taken the target drugs (e.g. ACE inhibitor) within the
time window prior to the first adverse drug reaction event, and other pa-
tients are in Class 0. Features selected for the profile of each patient are
described below.

Table 2. Discretisation of continuous variables.

Variable Groups Description

Age 4 0-19, 20-39, 40-59, 60+
Bed days 3 ≤ 2, 3-14, ≥ 15
Total scripts 3 0, 1, ≥ 2

From the hospital data, demographic variables such as age, gender,
indigenous status, postcode, the total number of bed days and the eight



hospital diagnosis flags are extracted. The hospital diagnosis and the total
number of bed days can be used to infer the health status of an individual.
From the PBS data, another 15 variables (including such variables as the
total number of scripts of the specified drug and the 14 ATC level-1 drug)
were extracted. The “total number of scripts” is used to indicate how long
an individual has been exposed to the drug (because each script usually
provides medication for one month). The 14 ATC level-1 drug categories
may be useful in measuring adverse drug reactions caused by interactions
between the specified drug and other drugs.

Table 1 lists the variables representing the profiles of patients. We
chooses some variables in the profiles in applying association classifica-
tion algorithm. As the number of variables and possible values of the
variables decrease, the run time of the algorithm will decrease. The algo-
rithm requires all the variables take only a set of discrete values. There
are many ways to discretise the continuous variables. For the sake of
understandability and simplicity, we use cutoff values to discretise the
variables. Table 2 lists the cutoff values used for continuous variables.

4 Representing Association Classification Rules

4.1 Case study - ACE inhibitor and angioedema

Usually when the modified optimal class association rule mining algorithm
is applied to identify the high risk groups, a large number of rules with
risk ratio greater than 2.0 are generated. We could not present hundreds
of rules to medical experts for the inspection. Furthermore, most of them
are correlated and provide similar information. We can select rules by an
effective method. Let all generated rules match all records in the data set
and only keep the rule with the highest risk ratio for each record. This
will reduce the number of rules significantly.

The five rules with highest risk ratio for the ACE inhibitor and an-
gioedema case study are listed below:

Rule 1: RR = 3.9948
– Gender = Female
– Hospital Circulatory Flag = Yes
– Usage of Drugs in category “Various” = Yes

Rule 2: RR = 3.8189
– Age > 60
– Usage of drugs in category of “Genito urinary system and sex hormones” = Yes
– Usage of drugs in category of “Systematic hormonal preparations” = Yes

Rule 3: RR = 3.4122
– Usage of drugs in category of “Genito urinary system and sex hormones” = Yes
– Usage of drugs in category of “General anti-infective for systematic use” = Yes



0 20 40 60 80

0.
99

0
0.

99
2

0.
99

4
0.

99
6

0.
99

8
1.

00
0

Survival Anlaysis of Rule 5 (blue one, P−value=5.0583e−09)

Age of Patient

P
ro

ba
bi

lit
y 

of
 N

o 
A

dm
is

si
on

 fo
r A

ng
io

ed
em

a

Fig. 1. Fleming-Harrington survival analysis of Rule 5 for the ACE inhibitor and an-
gioedema combination.

– Usage of drugs in category of “Nervous system” = No
Rule 4: RR = 3.3269

– Gender = Female
– Age group in [40, 59]
– Total bed days ≥ 15

Rule 5: RR = 3.2605
– Usage of drugs in category of “Alimentary tract metabolism” = No
– Usage of drugs in category of “Genito urinary system and sex hormones” = Yes
– Usage of drugs in category of “General anti-infectives for systematic use” = Yes

where RR indicates the risk ratio.
For each rule discovered, we conduct further evaluation, e.g., the sur-

vival analysis and its significance test [10, pp. 159-169]. The survival anal-
ysis is concerned with the modeling of ‘lifetime’ data. We estimate the
survivor function S(t), simply the probability of surviving beyond time
t, to distinguish the subgroup described by the rule from the others. In
addition, we use log-rank test, a formal measure of the strength of evi-
dence that two populations have different lifetimes. It is likely to detect a
difference between groups when the survival curve is consistently higher
for one group than another. A rule is statistically significant at the 0.01
level if its P-value is less than 0.01.

We exemplify the survival analysis on one rule. Figure 1 presents the
estimated survivor functions of the subgroup described by Rule 5 (the
one within the filled (blue) region) and the other patients (within the
shaded (red) region). The filled (blue) region and the shaded (red) region
indicates their confidence intervals, respectively. Clearly, for the age range
from 60 to about 80, the subgroup indicated by Rule 5 has significantly



higher probability of hospital admission for angioedema than the other
patients. The P-value of the log-rank test is 5.0583e-09, which is much
lower than 0.01. It also suggests that the sub-group described by Rule
5 is overwhelmingly different from the other patients. Similar interesting
results are also found in other rules [14].

4.2 Tree presentations

The rules identified by the association classification algorithm provide
useful knowledge to the medical practitioners, and can serve as a reference
in their prescription of drugs to the patients. The patients’ characteristics
can be compared to the rules to evaluate their risk to the suspected ad-
verse drug reaction. However, the rules presented above may not provide
enough information to the medical practitioners. The further breakdown
of the risks caused by individual risk factors provide important informa-
tion in their assessment of the risk. Therefore we employ a tree structure
to visualise the rules mined. A variable value pair is presented at each
node of the tree. The information on the support of the population, its
percentage and the risk ratio is presented on each node. The branch to
the right of the node list the information for complementary population.
The level down of each node gives another split of population using a new
variable value pair. Figure 2 shows an example. The Rule 1 is presented as
a tree with risk ratio (RR) as the main measure. The risk ratio is defined
by Equation 2.

According to Figure 2, female users of ACE inhibitors are 1.5376 times
more likely to have angioedema than the population average. For those
female patients who have a circulatory disease, the likelihood increases
to 1.8185. For those who are female, have a circulatory disease, and also
have taken drugs falling in Various category( the 14th ATC level-1 drug
category), the likelihood increases further to 3.9948. The tree presenta-
tion highlights how the risk ratio changes by each individual component.
Further stratifications may help to make rules more adaptable in clinical
decisions. Alternatively, we can define the risk ratio at each node to be
relative to the population of its parent node. Accordingly the risk ratio
at each node is expressed in Equation 3

RR(A → C | U) =
lsup(A

⋂
U → C)sup(A

⋂
U)

lsup(A
⋂

U → C)sup(A
⋂

U)
(3)

Where U is the rule on the parent node.
The tree presentation of the same rule using the alternative definition

of risk ratio is presented in Figure 3. According to Figure 3, female users



Fig. 2. The first tree presentation of Rule 1 for the ACE inhibitor and angioedema
case study.

of ACE inhibitors are 1.5376 times more likely to have angioedema than
the population average. For female patients, the patients who have a cir-
culatory disease, are 1.923 times more likely to develop angioedema than
other female patients. The female patients with a circulatory disease, and
who have used drugs in Various category (the 14th ATC level-1 drug cat-
egory) are 3.0647 time more likely than female patients with a circulatory
disease but not taking drugs in that category.

Similar to Figure 2, Figure 4 represents Rule 1 (the rule with the high-
est risk ratio) for the alendronate and esophagitus case study. Clearly,
users of alendronate aged 40-59 are 1.1026 times more likely to have
esophagitis than the population average. For those patients aged 40-59
who have used drugs falling in the category of Alimentary tract metabolism,
the likelihood increases to 1.6451. For those who are aged 40-59, have
used drugs falling in the category of Alimentary tract metabolism, and
also have taken drugs falling category of Cardiovascular systems, the like-
lihood increases further to 2.4607. This example illustrates that the pro-



Fig. 3. The second tree presentation of Rule 1 for the ACE inhibitor and angioedema
case study.

posed tree presentations are also suitable for the other two case studies,
and more examples can be found in [14].

5 Discussion and Conclusions

In this paper, we have applied an modified association classification algo-
rithm to health data to explore risk factors associated with adverse drug
reactions. Due to the nature of the problem, our association classification
mining method employs the local support and the risk ratio in order to
identify risk groups of patients with unbalanced classes.

We assessed the discovered rules using survival charts and introduced
two tree-type presentations to present risk factors in a comprehensible
way, and demonstrated them on mining three adverse drug reactions.
The first shows risk ratios when all rule conditions applied. The second



Fig. 4. The first tree presentation of Rule 1 for the alendronate and esophagitus case
study.

presents the risk associated with a single risk factor with other parts of
the rule identifying the cohort of the patient subpopulation. The tree
presentations are able to demonstrate the heightened risks due to a com-
bination of risk factors as well as due to a single risk factor. Thus, they
provide an effective way for medical practitioners to interpret clearly the
risk factors of adverse drug reactions.
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