® o
. Artificial Intelligence Developments and Applications - 273
1.S. Gero and R. Stanton (Editors)
© Elsevier Science Publishers B.V. (North-Holland), 1988

Combining decision trees
Initial results from the MIL algorithm

Graham J. Williams'
Department of Computer Science
Australian National University
Canberra Australia

Abstract: The induction of a decision tree from a set of examples of decisions provided
by an expert has become a useful tool for the construction of knowledge-based systems.
Although a number of different decision trees can be constructed for the same domain,
no techniques exist for combining them into integrated rule sets. The MIL algorithm is
introduced as a means for combining two decision trees into a single set of rules, for use
in a rule-based system.

1. INTRODUCTION

Knowledge acquisition is widely recognised as a major bottleneck in the de-
velopment of an expert system. Typically, the knowledge bases required by
such systems take from months to years to be constructed. Knowledge ac-
quisition (and in particular machine learning) has thus become a major area
of concern for expert systems research. Out of this research a number of
promising algorithms have surfaced (see Michalski, Carbonell, & Mitchell,
1986). ID3 (Quinlan, 1986a) in particular has proved to be a very useful
tool for aiding in the construction of knowledge bases. It implements a sim-.
ple, and yet powerful method for constructing (or inducing) decision trees
from examples of decisions. (This set of examples is called the training set.)
ID3 employs a ‘divide and conquer’ technique, repeatedly dividing the collec-
tion of examples into smaller and more homogenous collections. The divides

1Current address:
BBJ Computers International
PO Box 7047, Melbourne Victoria 3004, Australia

mp—— e g ot

274 G.J. Williams

correspond to branching in the decision tree, and each node of the tree corre-
sponds to a collection of examples to be conquered. Successful systems have
been constructed using this approach (Quinlan et al., 1986).

Williams (1987) describes a number of experiments which investigated
various aspects of the ID3 decision tree induction algorithm, and presented
a number of techniques for improving upon the decision trees produced by
this algorithm. The experiments illustrated, amongst other things, the al-
gorithm’s inability to always select a single decision tree from amongst all
the possible decision trees. A number of “equally good” decision trees, with
respect to the ID3 cost function, can be generated, with ID3 arbitrarily
choosing one. A problem exists in deciding which, of a number of apparently
equally good decision trees, to use. The MIL algorithm, as described here,
attempts to take advantage of this situation by introducing the idea of com-
bining decision trees. As well as making use of more of the information in a
training set, MIL leads to richer knowledge bases which improve upon the
combined performance and coverage of the individual ID3 decision trees.

An example application of the ID3 algonthm is presented in the fol-
lowing section. The construction of two “equally good” decision trees is
illustrated. Section 3 then introduces the MIL algorithm, and is followed by
an example application of the algorithm, illustrating the advantages of using
MIL. Other preliminary results are then presented.

2. DECISION TREE INDUCTION

An example will be used to illustrate the ID3 algorithm; full details of which
are provided by Quinlan (1986a). Rule sets consisting of rules of the form
“If A and B and ... Then W” will be used to illustrate the decision trees.
Each path through a decision tree is simply converted to a single rule, so
that rules in a rule set and paths through a decision tree have a one-to-one
mapping. The If-part of the rule corresponds to the tests performed at each
node of the decision tree, and the Then-part corresponds to the leaf node of
the path.

Williams (1987) describes the application of the ID3 algorithm to the
task of predicting the viability for grazing cattle in the range-land regions of
Australia. The ARID database is used. This is a subset of the Australian
Resources Information System (Walker, Cocks, & Young, 1985), and consists
of 8413 records. Each record (i.e., object) of the database corresponds to a
single grid-cell, which is an approximately 700 square kilometre rectangular
region; no regions overlap. For each object seven attributes are recorded.
These are the predominant soil type (Soil), the predominant class of upper
and lower storey vegetation (UVeg and LVeg respectively), the distance in
kilometres to the nearest seaport (DPort), and three moisture indicators
(AWMIH, AWMIS, and AWMIW). AWMIH is the average weekly moisture

Combining Decision Trees 275

index for the wettest consecutive 13 weeks of the year; AWMIS is the average
weekly moisture index from November to April inclusive (i.e., Summer in
Australia); and AWMIW is the average weekly moisture index from May
to October inclusive (i.e., Winter in Australia). Soil, UVeg, and LVeg are
unordered categorical attributes and can have one of 30,.50 and 41 possible
values respectively. The moisture indicators are integer attributes, taking on
integer values in the range 0 to 100.

A training set of 106 representative objects, referred to here as the T106
training set, was chosen from the ARID database. Each object in the training
set was given a classification, by a domain expert, indicating the viability of
grazing cattle in the corresponding region. The viability is expressed as being
one of four values: VLow (very low), Low, Medium, and High.

A regression model, based upon the 106 objects in the training set, has
been constructed for the prediction of viability (Cocks, Young, & Walker,
1986). This model is used as the oracle against which the performance of the
knowledge bases constructed here is compared.

ID3 begins by considering a number of candidate partitions of the train-
ing set. Each partition consists of two or more subsets of the training set,
with each attribute giving rise to a candidate partition. For categorical at-
tributes, each subset of the partition corresponds to a particular category of
the attribute. For integer attributes, two subsets are constructed, one con-
sisting of all objects having a value for the attribute less than some threshold,
and the other containing those objects with a value greater than or equal to
the threshold. ID3 then employs an entropy-type function to compute a
measure of the homogeneity, with respect to the Viability attribute, of the
various partitions of the training set. The attribute which partitions the
training set into the most homogenous subsets, as measured by this ‘cost
function’, is chosen as the root node of the decision tree. The attribute Soil
was chosen as the root node from the T106 training set.

Each of the subsets of the chosen partition are then considered, in turn,
as new training sets (sometimes referred to as training subsets). For example,
for the set of objects in T106 with a value of 15 for Soil (9 objects), a number
of partitions were constructed, and one (based upon the attribute DPort with
a threshold of 783) was chosen by ID3.

This divide and conquer process stops whenever all of the objects in a
training set have the same viability rating (i.e., all in the same class). For ex-
ample, all objects in the training subset containing those items with Soil=15
and DPort>783 were classified as having medium viability. Thus, this train-
ing subset is not further partitioned. In such a case, a leaf node of the
decision tree (or conclusion of a rule) has been reached, and the appropiate
class is associated with it.

276 G.J. Williams

As mentioned previously, a problem arises when the cost function is
unable to distinguish between two or more attributes. Such a situation oc-
curs several times in the application of [D3 to the viability problem. For
example, when Soil=26, UVeg and DPort tie for the minimum value of the
cost function. Rather than arbitrarily choosing between the attributes, it
seems sensible to consider them both, thus constructing two different deci-
sion trees. For the above task Williams (1987) constructs two such decision
trees, which, according to ID3, are equally good. These are the T106DC and
T106DI decision trees. The complete decision trees are not reproduced here.
However, sample rules from the corresponding rule sets are given below. The
samples illustrate the similarities and differences between the two rule sets.

T106DC:
If Soil=2 Then Viabilty=Medium
If Soil=15 and DPort>783 Then Viabilty=Medium
If Soil=16 and UVeg=9 Then Viabilty=Low
If Soil=26 and UVeg=2 Then Viabilty=VLow

T106DI:
If Soil=2 Then Viabilty=Medium
If Soil=15 and DPort>783 Then Viabilty=Medium
If Soil=16 and DPort<766 Then Viabilty=Low
If Soil=26 and DPort<635 Then Viabilty=Medium

Two measures of performance are used. They are the coverage, Or per-
centage of objects in the ARID database for which the rule set is able to
give classifications, and the accuracy, which is measured with respect to the
.classifications given to objects by the regression model. The classification of
an object by the rule sets here can either agree, mildly disagree, moderately
disagree, or strongly disagree, with the classification given to the same object
by the regression model. Two classifications of one object mildly disagree if
the two classes are neighbours in the natural ordering of the classes: viz
VLow, Low, Medium, High. For example, Low and Medium are neighbours,
whilst VLow and Medium are not. A moderate disagreement occurs when
the two classes are separated by one class, and a strong disagreement occurs
when the two are separated by two classes. Thus VLow and Medium repre-
sents a moderate disagreement, whilst VLow and High represents a strong
disagreement.

These measures for the two rule sets T106DC and T106DI are given
in Table 1. It is seen that whilst T106DI is able to classify considerably
more objects in the ARID database than T106DC, its accuracy has suffered.

Combining Decision Trees 277

Experiment Description Cover Agree Mild Mod Strong
T106DC Favour Categoricals 70.8 715 267 18 0.0
T106DI Favour Integers 843 648 331 21 0.0

TABLE 1: Summary of results from applying the rule sets
T106DC and T106DI, to the ARID database. The “Cover” is
the percentage of the objects in the ARID database which are
classifiable by the rule set. The other columns list the percent-
age agreement, mild disagreement, moderate disagreement, and
strong disagreement between the classification given to objects by

the rule set, and the classification given by the regression model.
Adapted from Williams (1987).

This illustrates a major difficulty with ID3. That is, it is possible to con-
struct two different, but apparently equally good, decision trees which differ
considerably with respect to their performances.

3. THE MIL ALGORITHM

The previous section illustrates ID3’s potential for producing a number of
“equally good” rule sets (or decision trees). We now look at a method for
combining such rule sets.

The immediate difficulty with combining rule sets is the problem of han-
dling conflicting classifications between the rule sets. That is, when one ob-
ject is classified differently by two rules from different rule sets. For example,
any object from the ARID database with Soil=26, UVeg=2, and DPort<635
will be classified as VLow by T106DC, but as Medium by T106DI. The res-
olution of these conflicts is the basis of the MIL algorithm.

The MIL algorithm takes two rule sets, each derived from different
decision trees, and produces a combined rule set which, with respect to some
pilot set of objects, does not produce any conflicts. The heart of the MIL
algorithm is the MIL conflict resolver (MIL.;). MIL,, is given a pair
of rules which give conflicting classifications to some objects in the pilot
set, and returns a number of rules which do not reproduce these conflicts,
nor introduce any new ones. MIL,, is iteratively applied until no conflicts
remain.

Before describing the algorithm, the notation will be introduced, fol-
lowed by abstract specifications of MIL and MIL.,. Each of the three main
tasks of the MIL,, system will then be described.

3.1 Terminology

The set A = {A;,..., A,-} is the set of domain atirtbutes which are used to
describe the objects of the domain. Each attribute takes on either integer

278 G.J. Williams

values or categorical values, and are called integer and categorical attributes
respectively. Categorical values come from a (small) set of possible values
associated with the categorical attribute. Ai(o) denotes the value of the
attribute A; associated with the object 0. The universe of all objects is
denoted by Ou; thus, 0 € Ou. A distinguished attribute, Class € A, is

called the conclusion attribute, and is the only attribute appearing as the
conclusion of a rule.

A rule set is a set of rules, each rule bhaving the form
R;: Cond = Class;,

where Cond specifies the conditions under which the conclusion Class; can
be derived for some object. Cond(o) is a predicate which is true only if
the object o satisfies the conditions specified by Cond. If Cond(o0) is true,
then the above rule is said to trigger with respect to the object o, and the
predicate trigger(R,0) is true. The predicate conclude(R, o, Class;) is true
if rule R triggers on object o, concluding that the object belongs to Class;.
If the first argument to this predicate is a rule set rather than a single rule,
then the predicate is true if there exists at least one rule in the rule set which
triggers on object o, and concludes that o belongs to Class;. Cond is called
a condition and has the form:

where C; has one of the forms

where A; € A and v is from the set of possible values for the attribute (either
a category or an integer). C; is referred to as a condition triplet since it always
consists of an attribute, a relational operator, and a value (or set of values),
and is written, for example, as [4;,=,v]. Further relational operators are
introduced later. :

R,; and R, will denote two rule sets derived directly from different
decision trees; both decision trees being constructed using the same training
set, Tr. A rule set is derived directly from a decision tree by constructing a
single rule for each path through the decision tree.

P is a pilot set—a set of objects (called pilot objects) to which the rule
sets will be applied in order to identify conflicts between the conclusions
reached by the rule sets. (It is called a pilot set since it is used to guide
the application of MIL “through unknown places.”) A conflict between two

Combining Decision Trees 279

rules, R, and R, from R, and R; respectively, consists of a non-empty set
of objects from P for which both rules trigger to give different conclusions.
This set of objects is called the conflict set, and is denoted by Cs. The two
rules will have the following form:

Ry: Cond; = Class;,
Ry: Condy = Class;.

The conflict set is then defined as:
Cs = {olo € P, Cond;(0) A Condz(0)}.

The conflict is denoted by @ = [R1, Rz, Cs].

The following two sets are the subsets of the training set contaming
those objects corresponding to R; and to R respectively:

Tr, = {o|o € Tr, Cond;(0)}
Tr, = {o|o € Tr, Condz(0)}

Tr; U Tr; is denoted by Tc. The two sets

P, = {olo € P, Cond,(0)},
P, = {o|o € P, Cond3(0)},

are the corresponding subsets of the pilot set. Thus Cs = P; NPa.

For the description of the MIL algorithm which follows, it is assumed
that Tr and P remain constant. Further, the rule sets to which R; and R
refer to will remain the same. A rule with the subscript 1 will always be a
member of R;, and similarly for rules with a subscript of 2. The form of a
rule from R; (Rz) will also be identified with 2 subscript of 1 (2). Primes
(') are used to distinguish between rules from the same rule set.

3.2 Specifications

Abstract specifications of MIL and MIL,., will make clear the intention of
the MIL algorithm. It is recalled that the task of MIL is to combine two
rule sets, and it does this by calling MIL., iteratively to resolve all conflicts
between the two rule sets.

MIL can be thought of as a function with four arguments, taking two
rule sets, the training set, and the pilot set, and returning a rule set:

MIL(RI,RQ,TI.', P) =R

280 G.J. Willigms

The training set is a parameter since it is used by MIL,,, and the pilot set
is required to identify conflicts.

The following properties of the output rule set, R, must hold:

PP P e

V o € P, conclude(R,, o, Class;) A conclude(R2, o, Classs)

= (conclude(R, o, Class;) @ conclude(R,, o, Classz))
Y o € Tr, conclude(R;, 0, Class;) = conclude(R, o, Class;)
V o € Tr, conclude(R;, 0, Class;) = conclude(R, o, Class;)

where @ is exclusive or.

The first property states that R resolves all conflicts between R; and
R;, with respect to P. The second and third properties state that R, like
R, and R,, is Tr-consistent. That is, it gives the same classifications to
objects in Tr as given by either R; or Ro.

Similarly, MIL., can be viewed as a function taking a conflict (con-
sisting of two rules and a non-empty conflict set) and the training set, and
returning either two or four rules. MIL removes R; and R, and places the
new rules in R.

MIL..(R;, R2,Cs, Tr) = {Cmb;, Cmb,, Cmbj, Cmbs},
where [R;, R2,Cs] is a conflict, and Cmbs and Cmby may be empty rules.

The following properties must hold, with the last two being conditional upon
Cmbs and Cmb, existing:

V o€ TruP \ Cs, conclude(R;,0, Class;) = conclude(Cmb;, 0, Class;)
conclude(R;3, o, Classz) = conclude(Cmb2, 0, Classz)

V o € Cs, —(trigger(Cmb;,0) V trigger(Cmb2, 0))
- 3 o€ TrUP \ Cs, trigger(Cmbs,0) V trigger(Cmby,0),
V o € Cs, trigger(Cmb3,0) @ trigger(Cmby, 0)

The notation A \ B refers to the set of those objects in A which are not in
B (i.e., set minus).

Cmb; and Cmb,, then, are replacements for R; and Rz and are called
replacement rules, whilst Cmbs and Cmb, deal with the objects in conflict
and are called the introduced rules. The replacement rules will give the same
classification to those objects in Tr and P, but not in Cs (i.e. TrUP'\ Cs),
as they previously received, whilst the introduced rules will only trigger on
those objects in Cs, and both cannot trigger on the same object.

R will consist of all rules in Ry and R;, except for those rules which
are replaced by those returned by MIL.,.

Combining Decision Trees 281

3.3 The MIL Conflict Resolver

The basic steps of the MIL,, algorithm are now described. Each step is
briefly introduced, followed by a detailed description of the operations in-
volved. The MIL., system firstly constructs candidate descriptions which
describe some difference between the two training subsets Tr; and Tr. One
of these candidates is then selected. The rules R, and R, are then modified
(producing the replacement rules) and new rules are constructed (producing
the introduced rules) using the selected description.

Constructing Candidate Descriptions

Given Ry, Rz, and Tr, MIL., considers the subsets of Tr corresponding
to the two given rules: namely Tr; and Trs. Candidate descriptions which
differentiate between the objects in Tr; and Trz, and also partition the
objects in Cs, are then searched for. These candidate descriptions consist
of pairs of condition triplets, each pair involving just a single attribute, with
each attribute appearing in at most one pair of condition triplets. The first
major task for MIL., can be summarised as:

Step 1. For each attribute in A attempt to construct a candidate descrip-
tion, consisting of a pair of condition triplets, (Cons,, Consz),
such that Cons; is true for every object in Try, but not for any
object in Try, and Cons is true for Trz, but not Tr;. Each
candidate description must also partition Cs.

The last requirement listed in Step 1 specifies that Cons; must describe a
non-empty subset of Cs, and Consz must describe all the other objects in
Cs not described by Cons;, and must also be non-empty. Certain attributes
can be eliminated from consideration even before we attempt to construct
descriptions involving them. Any attribute appearing in a condition triplet
of the form [A,-,=,v] in either of Cond; or Conds, can be removed from
consideration, since every object in Cs satisfies both Cond, and Condg, and
so every object in Cs has the value v for A;. Thus no description involving
this attribute alone can partition Cs.

For the remaining attributes, this step involves two cases, corresponding
to the two types of attributes. For integer attributes, binary splits are looked
for, whilst for categorical attributes, two disjoint sets of values of the attribute
are constructed. These two cases are considered separately. Vi and V2 are
used to denote the sets of values of an attribute associated with the two
training sets. For attribute A;, V1 = {Ai(0)|o € Tr1}, and V2 = {Ai(o)|o €
Tra}-

Case 1.1. A is an integer attribute: Find some value of A4, v say, such that

all the values of A in Try are less than y and all values in Tr; are
greater than or equal to 7, or vice versa, and such that v partitions

282 G.J. Williams

Cs. If no such v can be found, then no candidate description is
constructed for this attribute.

The two situations referred to in Case 1.1 (viz. V; < V2 and V; < W;) are
symmetric, and so only the former is dealt with here. Let

&= max A(o), and B = Drél%ll}: A(o).
That is, a is the maximum value of A in V}, and $ is the minimum value in
V2 and a < B. We attempt to find some v such that @ < 4 < B. One such
v is 3—'%1, rounded to the nearest integer, ¢ la the ID3 threshold. If the pair
of condition triplets Cons; = [A, <,7] and Conss = [A, 2,7/, describes two
non-empty subsets (i.e. partitions) of Cs, then (Cons;, Cons;) is a candidate
description. However, if this vy does not partition Cs, then, if the maximum
value of A in Cs is greater than «, and the minimum value is less than S,
some other value for v, with @ < v < 8, will. In this case, v = a + 1 if the
minimum value of A in Cs is less than or equal to «, otherwise, v = 8. If no
appropriate value for y can be found, then no candidate description based
on A is constructed.

Case 1.2. A isa categorical attribute: Find two sets of values of the attribute
A such that every object in Tr; has a value for A which is in one
of the sets, and every object in Tr; has a value which is in the
other set. If no appropriate disjoint sets cannot be found, or if the
sets of values do not partition Cs, then no candidate description
is constructed for this attribute.

Vi1 and V; are constructed as the sets of values of A found in Tr; and Tr,
respectively. If the intersection of Vi and V; is empty, then the triplets
Cons; = [A, €,Vi] and Cons, = [A, €, V2] are candidate descriptions if they
partition Cs. Otherwise, no candidate description based on A is constructed.

Description Selection

The second task of MIL,, involves choosing one description from the set of
candidate descriptions. If no descriptions have been constructed in Step 1,
though, then Step 2 does nothing.

The approach taken is based on the following heuristic:

Heuristic: Descriptions using integer attributes should be pre-
ferred to those using categorical attributes.

This heuristic results from the experiments described in Williams (1987). The
underlying principle is that we wish to cover as many objects as possible.
If a pair of condition triplets involves an integer attribute, every possible
value of that attribute is covered by the description. This is not typically

Combining Decision Trees 283

true for categorical attributes, where the description only covers those values
explicitly mentioned in the training set. Generalising this then, we want to
select the description having the widest coverage of objects in Tr. We do
this with respect to Tr since this set 18 presumed to be representative of the
values of the attributes. Step 2 is thus:

Step 2. If the set of candidate descriptions is non-empty, then choose the
description which accounts for the most objects in Tr.

This step clearly favours integer attributes. If there is still some choice
available, then a prespecified ordering of the attributes is used.

Rule Construction

We now deal with the task of removing the conflict. This is done by firstly
constructing the replacement rules for R; and R,. If candidate descriptions
have been constructed, the introduced rules are then constructed, based on
the description selected in Step 2.

Step 3. Construct the replacement rules: Modify R; and Rz such that
neither triggers whenever the other does, and such that they still
classify objects in Tr correctly.

Replacements rules satisfying these constraints are:

Cmby: Condy A—Condz = Class,
Cmb,: Conda A —~Cond, = Classs

The conjunction Condy A ~Cond, describes all those objects in Tr that are
also described by Cond, zlone, and similarly for Condz A —~Cond;. Hence
Cmb, and Cmb, will classify the same objects in Tr as classified by R; and
R,. Further, Cond; A ~Cond, describes no object in Cs, but may describe
objects in P\ Cs. These objects, though, will receive the same classification
as given by R, previously. Similarly for R,. Thus, by replacing R: and R»
by Cmb, and Cmb,, Tr-consistency is maintained, and classifications given
to objects in P \ Cs are unchanged.

Step 4. If candidate descriptions exist, then construct the introduced rules
from the pair of conditions from the chosen description: Cons,
and Consa.

The introduced rules are:

Cmbs: Condy A Condz A Cons; = Class;
Cmby: Cond; A Condsz A Consy = Class;

There are no objects in Tr for which Condy A Cond holds, and so R remains
Tr-consistent. Further, Cs contains a1l those objects in P for which Cond1 A
Cond, holds, thus the effect of the above two rules is local to Cs only.

284 G.J. Williams

Finally, the new rules are returned:

Step 5. Return the rules Cmb;,Cmbs, Cmb,, Cmbs, where Cmb; and
Cmb, exist only if candidate descriptions were constructed.

4. APPLYING THE MIL ALGORITHM

MIL.. is now applied to the task of resolving a conflict which occurs when
T106DC and T106DI are combined. Two rules which result in conflict are:
R, from T106DC and R, from T106DL.

R;: Soil =26, UVeg = 2 = Viow,
Ry: Soil = 26, DPort < 635 = Medium.

Table 2 lists all the objects from T106 which correspond to these two rules.

Region Soil UVeg LVeg DPort AWMIH AWMIS AWMIW Class

30503 26 2 4 801 16 16 09 V Low
21423 26 3 2 467 52 09 33 Medium
21424 26 3 2 469 49 09 29 Medium

TABLE 2: The objects from the T106 training set
associated with the two rules R; and R, are listed. The
first object corresponds to R, (Soil = 26 and UVeg =
2) whilst the last two correspond to R, (Soil = 26 and
DPort < 635).

The conflict associated with the above two rules only exists when the
condition

Soil = 26, UVeg = 2, DPort < 635
holds. In order to avoid both R; and R, firing for objects which satisfy this
condition, these two rules are modified by adding appropriate conditions to
their If-parts. The condition added to R; is the negation of the condition
of R3, which, after removing redundancies, is DPort > 635. For rule R;, we
add the negation of the condition of R;, which, with respect to the union of
the corresponding training sets, is UVeg=3. The replacement rules are thus:

Cmb;: Soil = 26, UVeg = 2, DPort > 635 = VLow,
Cmb;: Soil = 26, DPort < 635, UVeg = 3 = Medium,

We now consider a number of objects which are in conflict with respect
to the two rules R; and R,. Eight such objects from the ARID database

Combining Decision Trees 285

Region Soil UVeg LVeg DPort AWMIH AWMIS AWMIW
28542 26 2 3 630 20 17 08
30543 26 2 3 602 19 18 07
30552 26 2 3 517 22 18 06
32542 26 2 4 513 20 18 05
35523 26 2 4 621 16 15 03
45562 26 2 4 575 24 17 05
64372 26 2 10 539 19 08 . 09
65371 26 2 10 537 18 08 09

TABLE 3: Eight objects from the ARID database
with Soil = 26, UVeg = 2, and DPort < 635 are listed.
Both rules R; and R, fire on these objects.

are listed in Table 3, and we assume here that they belong to the pilot set.
These objects form the conflict set, Cs.

The candidate descriptions must now be constructed. The discusion
following step 1 of the algorithm above indicates that Soil and UVeg can be
eliminated from consideration, since each object in the conflict set has a value
of 26 for Soil and 2 for UVeg. Table 2 shows that LVeg may be a candidate,
since all objects from Tr; U Tr; with LVeg=4 are classified as VLow, whilst
those with LVeg=2 are Medium. However, Cs is not partitioned by these
values of LVeg. For DPort the possible values of v are 635, 470, and 801—
none of which partition Cs. The values of v for AWMIH are 33, 17, and 49,
leading to the candidate description [AWMIH,<,17] [AWMIH,>,17]. The
only other candidate description is [AWMIS,>,13] [AWMIS, <,13].

Of the two candidates, AWMIS is chosen, leading to the two introduced
rules:

Cmbs: Soil = 26, UVeg = 2, DPort < 635, AWMIS > 13 = Viow.
Cmby: Soil = 26, UVeg = 2, DPort < 635, AWMIS < 13 = Medium,

With this modification (replacing R; and R by Cmb;, Cmby, and
introducing Cmbs, and Cmby), we apply the combined rule set to the ARID
database. In the ARID database there is a total of 35 objects for which both
R, and R, fired. Only two of these (regions 65371 and 64372 of Table 3)
are classified by rule Cmbs, whilst the others are classified by Cmby. These
classifications can be compared to those given to these 35 objects by the
regression model. It is found that 22 of the objects which were in moderate
disagreement between T106D1 and the model, are now in agreement with the
model.

286 G.J. Williams

Table 4 presents the results of applying the combined rule set to the
ARID database. This rule set consists of all the rules from both T106DC
and T106DI, except that the rules R; and R; have been removed, and
Cmb,, ..., Cmb, have been added. Any remaining conflicts (from other rules)
are treated as Null classifications (i.e., not assigning any class to the object).
It is seen that, with just this one conflict removed, we have a rule set which

has improved upon the coverage obtained by T106DC, whilst improving upon
the accuracy of T106DI.

Experiment _ Description Cover Agree Mild Mod Strong
CombDCDIa Modified Rule Set. 79.7 67.4 30.8 1.8 0.0
T106DC Favour Categoricals 70.8 715 26.7 1.8 0.0
T106DI Favour Integers 843 648 331 2.1 0.0

TABLE 4: Comparison of the results from using the modified
combined rule set (replacing R, and R, with Cmb,, Cmb,, and
introducing Cmbs and Cmby) and the original decision trees. The
conflicts yet to be dealt with by MIL in CombDCDIa are regarded
as Null classifications.

5. MORE RESULTS

Further experimentation with the MIL algorithm is in progress. Early results
have confirmed that improvements, as observed in the previous example,
occur in other applications. Here, we look at two instances where MIL,,
is applied to all conflicts occurring in the combined rule set, resulting in a
conflict-free rule set.

These experiments deal with the task of predicting how well a student
without English as a first language will perform at an Australian University.
The data is completely fictitious, being derived from a simple equation repre-
senting the model. Four parameters are considered; Y is the number of years
spent at school in Australia before starting University; A is the current age
of the student; E is a rating of the English language ability of the student;
and S is the matriculation score, or equivalent, of the student. Y and A are
integer attributes, with Y ranging from 0 to 10, and A from 15 to 35. E and
S are both 5-valued categorical attributes, having the values Very Poor (0),
Poor (1), Ok (2), Good (3), and Excellent (4). U is the predicted perfor-
mance, being one of three values: Poor, Ok, Good. The model computes U
as:

U=2xY+2x|25—-—A|+15xE+25xS.

The three classes of U correspond to the three ranges 0...69, 70...139, and
140. . .200.

Combining Decision Trees 287

The database contains 5775 objects. Two random samplings of twenty
objects each are used as the training sets for the two experiments, A and
B. For each experiment, ID3 is used to construct two “equally good” rule
sets. The two rule sets are then combined, using MIL to resolve conflicts.
Tables 5 and 6 list the results. In the first case the coverage is the same as
that of the best coverage of either\rule sets (i.e., the same as Al), whilst the
accuracy is better than that obtained by AL The second case is very similar.

Experiment Description Cover Agree Mild Mod
AC Favour Categoricals 800 81.1 189 0.0
Al Favour Integers 920 673 327 0.0
AComb Combined Rule Set 920 725 274 0.0

TABLE 5: The rule set AComb results from com-
bining AC and Al and then applying MIL,, to all
conflicts. No conflicts remain.

Experiment Description Cover Agree Mild Mod
BC 1D3 Favouring Categoricals 640 768 215 1.6
BI ID3 Favouring Integers 96.0 499 448 5.4
BComb Combined Rule Set 93.1 60.5 375 3.5

TABLE 6: The rule set BComb results from com-
bining BC and BI, and then applying MIL,, to all
conflicts. No conflicts remain.

Further experiments, but using rule sets as models, are currently under
way.

6. DISCUSSION

The MIL algorithm allows decision trees, as produced by ID3, to be com-
bined. The preliminary experiments presented here have illustrated that
MIL produces rule sets which approach (and may attain) both the coverage
and the accuracy of the best of the ID3 decision trees it combines. That is,
MIL appears to provide a sensible way of combining decision trees, produc-
ing more consistency in the resulting rule sets, with respect to accuracy and
coverage, than the ID3 algorithm alone does.

MIL also provides a means for generating If-Then type rules from deci-

sion trees. There are many advantages with using rules rather than decision
trees. Amongst these are that rules are the most popular form of knowledge

288 G.J. Williams

representation in expert systems, for good reasons (Waterman, 1986). Each -

rule represents a single chunk of knowledge which can be easily modified or
removed, usually independently of other rules in the system. A decision tree
does not provide the same degree of flexibility offered by rules. It is difficult
for example to modify individual paths through a decision tree. :

Quinlan (1986b) has also presented a technique for generating rules
from decision trees. An initial rule set is generated from a single decision
tree in the manner described at the beginning of Section 2. Each rule is then
considered in turn to see if it can be generalised (simplified) by dropping
conditions from its left-hand side. A statistical test (Fisher’s exact test)
is then used to determine if the hypothesis that the dropped condition is
irrelevant to the conclusion of the rule can be rejected. A certainty factor
is also associated with each rule. Quinlan concludes that this method has
proved especially powerful.

Quinlan’s method can be contrasted with MIL. Whereas Quinlan gen-
eralises rules, and thus possibly increasing the coverage of the rule set, MIL
specialises rules. Consequently, MIL cannot produce a rule set with greater
coverage than the best of the decision trees it combines. Also, both methods
make more use of the data in the training set. Quinlan uses statistics to
guide the generalisations, whilst MIL constructs further decision trees from
the same data, adding more rules to the rule set. MIL though requires the
existence of another set of objects—the pilot set—which is used to guide the
specialisation and introduction of further rules. Finally, Quinlan comments
on the need to be able to combine decision trees (rule sets). MIL represents
an attempt to do this.

Whilst we have demonstrated the usefulness of the MIL algorithm,
its full potential has yet to be explored. A number of limitations do exist.
For example, MIL has only been used so far to combine two decision trees
at a time. But ID3 may produce more than two equally good trees. The
implications of combining more decision trees have not been explored.

It is important that we be able to combine rule sets in general. As well
as the situation described here, where one induction algorithm produces a
number of alternate rule sets, other possibilities for the application of MIL
exist. For example, we may want to combine the “best” rule sets generated
by a number of induction algorithms, or to combine an induced rule set with
an expert-written rule set. Combining rule sets derived from different human
experts may also be a candidate problem.

R R et

Combining Decision Trees 289
Refg rences

Cocks, K. D., Young, M. D., & Walker, P. A. (1986). Mapping relative viabil-
ity prospects for pastoralism in Australia, Agricultural Systems, 20: 175-193.

Michalski, R. S., Carbonell, J. G., & Mitchell, T . M. (1986). Machine Learn-
ing: An Artificial Intelligence Approach, Vol. 2, Kaufmann, Palo Alto, Cali-

fornia.

Quinlan, J. R. (19862). Induction of decision trees, Machine Learning, 1(1):
81-106.

Quinlan, J. R. (1986b). Simplifying decision trees, Knowledge Acquisition for
Knowledge-Based Systems Workshop, Banff, Canada.

Quinlan, J. R., Compton, P. J., Horn, K. A., & Lazarus, L. (1986). Inductive
knowledge acquisition: A case study, in Proceedings of the Second Australian

Conference on Applications of Expert Systems, New South Wales Institute
of Technology.

Walker, P. A., Cocks, K. D., & Young, M. D. (1985). Regionalising continental
data sets, Cartography, 14(1): 66-73.

Williams, G. J. (1987). Some experiments in decision tree induction, The
Australian Computer Journal, 19(2): 84-91.

